

## DIPLOMA IN ENGINEERING AND TECHNOLOGY

# 1021 DEPARTMENT OF AUTOMOBILE ENGINEERING SEMESTER PATTERN

## N - SCHEME

TO BE IMPLEMENTED FOR STUDENTS ADMITTED FROM 2020 - 2021 ONWARDS

**CURRICULUM DEVELOPMENT CENTRE** 

DIRECTORATE OF TECHNICAL EDUCATION CHENNAI-600 025, TAMIL NADU

## STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

#### **N SCHEME**

(To be implemented for the students admitted from the 2020 -2021 onwards)

#### **Chairperson**

TMT. G.LAXMI PRIYA, I.A.S

Director

Directorate of Technical Education, Guindy, Chennai.

#### **Co-ordinator**

Thiru R.Kanagaraj
Principal
Government Polytechnic College, Purasawlkam, Chennai.

#### 1021 DIPLOMA IN AUTOMOBILE ENGINEERING

#### Convener

Thiru M.Sugumaran
Principal I/c
Ramakrishna Mission Polytechnic College
Mylapore, Chennai – 4.

#### **Members**

Thiru P.Jeyasekaran Founder – IQNET Systems Ram Nagar, South Madipakkam, Chennai.

Thiru N.Thirunavukkarasu HOD / Mechanical Government Polytechnic College Tiruvannamalai.

Thiru S.Robinson HOD/Mechanical Bharath Polytechnic College Agaramthen, Chennai. Dr. A.R.Pradeep Kumar Professor & Head Department of Mechanical Engineering Dhanalakshmi College of Engineering Chennai

Thiru T.Jothiram HOD/ Automobile I/c NPA Centenary Polytechnic College Kothagiri,

S.Dinesh Kumar Lecturer/Mechanical CIT Sandwich Polytechnic College Coimbatore

# DIPLOMA COURSES IN ENGINEERING/TECHNOLOGY (SEMESTER SYSTEM)

(Implemented from 2020 - 2021)

#### N - SCHEME

#### REGULATIONS\*

\*Applicable to the Diploma Courses other than Diploma in Hotel Management & Catering Technology.

#### 1. Description of the Course:

#### a. Full Time (3 years)

The Course for the Full Time Diploma in Engineering shall extend over a period of three academic years, consisting of 6 semesters\* and the First Year is common to all Engineering Branches.

#### b. Sandwich (3½ years)

The Course for the Sandwich Diploma in Engineering shall extend over a period of three and half academic years, consisting of 7 semesters\* and the First Year is common to all Engineering Branches. The subjects of three years full time diploma course being regrouped for academic convenience.

During 4<sup>th</sup> and/or during 7<sup>th</sup>semester the students undergo industrial training for six months/ one year. Industrial training examination will be conducted after completion of every 6 months of industrial training.

#### c. Part Time (4 years)

The course for the Part Time Diploma in Engineering shall extend over a period of 4 academic years containing of 8 semesters\*, the subjects of 3 year full time diploma courses being regrouped for academic convenience.

\* Each Semester will have 16 weeks duration of study with 35 hrs. / Week for Regular Diploma Course and 18 hrs. / Week for Part-Time Diploma Course.

The Curriculum for all the 6 Semesters of Diploma courses (Engineering & Special Diploma Courses viz. Textile Technology, Leather Technology, Printing Technology, Chemical Technology etc.) have been revised and revised curriculum is applicable for the candidates admitted from 2020 – 2021 academic year onwards.

#### 2. Condition for Admission:

Condition for admission to the Diploma courses shall be required to have passed in The S.S.L.C Examination of the Board of Secondary Education, Tamil Nadu.(Or)

The Anglo Indian High School Examination with eligibility for Higher Secondary Course in Tamil Nadu.(Or)

The Matriculation Examination of Tamil Nadu.(Or)

Any other Examinations recognized as equivalent to the above by the Board of Secondary Education, Tamil Nadu.

Note: In addition, at the time of admission the candidate will have to satisfy certain minimum requirements, which may be prescribed from time to time.

#### 3. Admission to Second year (Lateral Entry):

A pass in HSC (academic) or (vocational) courses mentioned in the Higher Secondary Schools in Tamil Nadu affiliated to the Tamil Nadu Higher Secondary Board with eligibility for university Courses of study or equivalent examination & should have studied the following subjects.

A pass in 2 Years ITI with appropriate Trade or Equivalent examination.

| H.Sc Acad |             | H.Sc Academic         | H.Sc Vo           | cational      | Industrial   |
|-----------|-------------|-----------------------|-------------------|---------------|--------------|
| SI.       | Courses     |                       | Subjects          | Studied       | Training     |
| No        | Courses     | Subjects Studied      | Related subjects  | Vocational    | Institutes   |
|           |             |                       | Related Subjects  | subjects      | Courses      |
| 1.        | All the     | Physics and Chemistry | Maths / Physics / | Related       | 2 years      |
|           | Regular and | as compulsory along   | Chemistry         | Vocational    | course to be |
|           | Sandwich    | with Mathematics /    |                   | Subjects      | passed with  |
|           | Diploma     | Biology               |                   | Theory&       | appropriate  |
|           | Courses     |                       |                   | Practical     | Trade        |
| 2.        | Diploma     | English & Accountancy | English &         | Accountancy & |              |
|           | Course in   |                       | Accountancy,      | Auditing,     |              |
|           | Commercial  | English &             |                   | Donking       |              |
|           | Practice    | Elements of           | English &         | Banking,      |              |
|           |             | Economics             | Elements of       | Business      |              |
|           |             |                       | Economics,        | Management,   |              |
|           |             | English &             |                   |               |              |
|           |             | Elements of           | English &         | Co-operative  |              |
|           |             | Commerce              | Management        | Management,   |              |
|           |             |                       | Principles        | International |              |
|           |             |                       | & Techniques,     | Trade,        |              |
|           |             |                       |                   | 11440,        |              |
|           |             |                       | English &         |               |              |
|           |             |                       | Typewriting       | Salesmanship, |              |
|           |             |                       |                   | Insurance &   |              |
|           |             |                       |                   | Material      |              |
|           |             |                       |                   | Management,   |              |
|           |             |                       |                   | managoment,   |              |
|           |             |                       |                   | Office        |              |
|           |             |                       |                   | Secretaryship |              |

- For the Diploma Courses related with Engineering/Technology, the related / equivalent subjects prescribed along with practicals may also be taken for arriving the eligibility.
- Branch will be allotted according to merit through counseling by the respective Principal as per communal reservation.
- For admission to the Textile Technology, Leather Technology, Printing Technology, Chemical Technology and Commercial Practice Diploma courses the candidates studied the related subjects will be given first preference.
- Candidates who have studied Commerce Subjects are not eligible for Engineering Diploma Courses.

#### 4. Age Limit: No Age limit.

#### 5. Medium of Instruction: English

#### 6. Eligibility for the Award of Diploma:

No candidate shall be eligible for the Diploma unless he/she has undergone the prescribed course of study for a period of not less than 3 academic years in any institution affiliated to the State Board of Technical Education and Training, Tamil Nadu, when joined in First Year and two years if joined under Lateral Entry scheme in the second year and passed the prescribed examination.

The minimum and maximum period for completion of Diploma Courses are as given below:

| Diploma Course  | Minimum<br>Period | Maximum<br>Period |
|-----------------|-------------------|-------------------|
| Full Time       | 3 Years           | 6 Years           |
| Full Time       | 2 Years           | 5 Years           |
| (Lateral Entry) |                   |                   |
| Sandwich        | 3½ Years          | 6½ Years          |
| Part Time       | 4 Years           | 7 Years           |

This will come into effect from N Scheme onwards i.e. from the academic year 2020-2021.

#### 7. Subjects of Study and Curriculum outline:

The subjects of study shall be in accordance with the syllabus prescribed from time to time, both in theory and practical subjects.

The curriculum outline is given in Annexure – I.

#### 8. Examinations:

Board Examinations in all subjects of all the semesters under the scheme of examinations will be conducted at the end of each semester.

The internal assessment marks for all the subjects will be awarded on the basis of continuous internal assessment earned during the semester concerned. For each subject 25 marks are allotted for internal assessment. Board Examinations are conducted for 100 marks and reduced to 75.

The total marks for result are 75 + 25 = 100 Marks.

#### 9. Continuous Internal Assessment:

#### A. For Theory Subjects:

The Internal Assessment marks for a total of 25 marks, which are to be distributed as follows:

#### i) Subject Attendance

5 Marks

(Award of marks for subject attendance to each subject Theory/Practical will be as per the range given below)

| 80% | - | 83%  | 1 Mark  |
|-----|---|------|---------|
| 84% | - | 87%  | 2 Marks |
| 88% | - | 91%  | 3 Marks |
| 92% | - | 95%  | 4 Marks |
| 96% | - | 100% | 5 Marks |

ii) Test 10 Marks

2 Tests each of 2 hours duration for a total of 50 marks are to be conducted. Average of the these two test marks will be taken and the marks to be 05 Marks reduced to:

The Test – III is to be the Model Examination covering all the five units and the marks obtained will be reduced to:

05 Marks

| TEST     | UNITS                                                                                       | WHEN TO CONDUCT                 | MARKS | DURATION |
|----------|---------------------------------------------------------------------------------------------|---------------------------------|-------|----------|
| Test I   | Unit – I & II                                                                               | End of 6 <sup>th</sup> week     | 50    | 2 Hrs    |
| Test II  | Unit – III & IV                                                                             | End of 12 <sup>th</sup><br>week | 50    | 2 Hrs    |
| Test III | Model Examination: Covering all the 5 Units. (Board Examinations- question paper- pattern). | End of 16 <sup>th</sup><br>week | 100   | 3 Hrs    |

<sup>#</sup> From the Academic Year 2020 – 2021 onwards.

Question Paper Pattern for the Test - I and Test - II is as follows. The tests should be conducted by proper schedule. Retest marks should not be considered for internal assessment.

#### Without Choice:

|                        | Total                  | 50 marks |
|------------------------|------------------------|----------|
| Part C Type questions: | 2 Questions x 15 marks | 30 marks |
| Part B Type questions: | 7 Questions x 2 marks  | 14 marks |
| Part A Type questions: | 6 Questions x 1 mark   | 06 marks |

<u>iii) Assignment</u> 5 Marks

For each subject Three Assignments are to be given each for 20 marks and the average marks scored should be reduced for 5 marks.

#### iv) Seminar Presentation

#### 5 Marks

The students have to select the topics either from their subjects or general subjects which will help to improve their grasping capacity as well as their capacity to express the subject in hand. The students will be allowed to prepare the material for the given topic using the library hour and they will be permitted to present seminar (For First and Second Year, the students will be permitted to present the seminar as a group not exceeding six members and each member of the group should participate in the presentation. For the Third Year, the students should present the seminar

individually.) The seminar presentation is mandatory for all theory subjects and carries 5 marks for each theory subject. The respective subject faculty may suggest topics to the students and will evaluate the submitted materials and seminar presentation. (2 ½ marks for the material submitted in writing and 2 ½ marks for the seminar presentation). For each subject minimum of two seminars are to be given and the average marks scored should be reduced to 5 marks.

All Test Papers, Assignment Papers / Notebooks and the seminar presentation written material after getting the signature with date from the students must be kept in safe custody in the department for verification and audit. It should be preserved for one semester after publication of Board Exam results and produced to the flying squad and the inspection team at the time of inspection/verification.

#### B. For Practical Subjects:

The Internal Assessment mark for a total of 25 marks which are to be distributed as follows:-

a) Attendance : 5 Marks

(Award of marks same as theory subjects)

b) Procedure/ observation and tabulation/

Other Practical related Work : 10 Marks
c) Record writing : 10 Marks
TOTAL : 25 Marks

- All the Experiments / Exercises indicated in the syllabus should be completed and the same to be given for final Board examinations.
- The observation note book / manual should be maintained for 10 marks. The
  observation note book / manual with sketches, circuits, programme, reading and
  calculation written by the students manually depends upon the practical subject during
  practical classes should be evaluated properly during the practical class hours with
  date.
- The Record work for every completed exercise should be submitted in the subsequent practical classes and marks should be awarded for 10 marks for each exercise as per the above allocation.
- At the end of the Semester, the average marks of all the exercises should be calculated for 20 marks (including Observation and Record writing) and the marks

awarded for attendance is to be added to arrive at the internal assessment mark for Practical. (20+5=25 marks)

 Only regular students, appearing first time have to submit the duly signed bonafide record note book/file during the Practical Board Examinations.

All the marks awarded for Assignments, Tests, Seminar presentation and Attendance should be entered periodically in the Personal Theory Log Book of the staff, who is handling the theory subject.

The marks awarded for Observation, Record work and Attendance should be entered periodically in the Personal Practical Log Book of the staff, who is handling the practical subject.

## 10. Communication Skill Practical, Computer Application Practical and Physical Education:

The Communication Skill Practical and Computer Application Practical with more emphasis are being introduced in First Year. Much Stress is given to increase the Communication skill and ICT skill of students.

As per the recommendation of MHRD and under Fit India scheme, the Physical education is introduced to encourage students to remain healthy and fit by including physical activities and sports.

#### 11. Project Work and Internship:

The students of all the Diploma Courses have to do a Project Work as part of the Curriculum and in partial fulfillment for the award of Diploma by the State Board of Technical Education and Training, Tamil Nadu. In order to encourage students to do worthwhile and innovative projects, every year prizes are awarded for the best three projects i.e. institution wise, region wise and state wise. The Project work must be reviewed twice in the same semester. The project work is approved during the V semester by the properly constituted committee with guidelines.

#### a) Internal assessment mark for Project Work & Internship:

Project Review I ... 10 marks
Project Review II ... 10 marks

Attendance ... **05 marks** (Award of marks same as

theory subject pattern)

| Total | <br>25 marks |
|-------|--------------|
|       |              |

Proper record should be maintained for the two Project Reviews and preserved for one semester after the publication of Board Exams results. It should be produced to the flying squad and the inspection team at the time of inspection/verification.

#### b) Allocation of Marks for Project Work & Internship in Board Examinations:

| Total                      | 100* marks |
|----------------------------|------------|
| Internship Report          | 20 marks   |
| Viva Voce                  | 30 marks   |
| Report                     | 25 marks   |
| Demonstration/Presentation | 25 marks   |

<sup>\*</sup>Examination will be conducted for 100 marks and will be converted to 75 marks.

#### c) Internship Report:

The internship training for a period of two weeks shall be undergone by every candidate at the end of IV / V semester during vacation. The certificate shall be produced along with the internship report for evaluation. The evaluation of internship training shall be done along with final year "Project Work & Internship" for 20 marks. The internship shall be undertaken in any industry / Government or Private certified agencies which are in social sector / Govt. Skill Centres / Institutions / Schemes.

A neatly prepared PROJECT REPORT as per the format has to be submitted by individual student during the Project Work & Internship Board examination.

#### 12. Scheme of Examinations:

The Scheme of examinations for subjects is given in Annexure - II.

#### 13. Criteria for Pass:

- 1. No candidate shall be eligible for the award of Diploma unless he/she has undergone the prescribed course of study successfully in an institution approved by AICTE and affiliated to the State Board of Technical Education & Training, Tamil Nadu and pass all the subjects prescribed in the curriculum.
- 2. A candidate shall be declared to have passed the examination in a subject if he/she secures not less than 40% in theory subjects and 50% in practical subjects out of the total prescribed maximum marks including both the Internal Assessment and the Board Examinations marks put together, subject to the condition that he/she secures at least a minimum of 40 marks out of 100 marks in the Board Theory Examinations and a minimum of 50 marks out of 100 marks in the Board Practical Examinations.

#### 14. Classification of successful candidates:

Classification of candidates who will pass out the final examinations from April 2023 onwards (Joined first year in 2020 -2021) will be done as specified below.

#### **First Class with Superlative Distinction:**

A candidate will be declared to have passed in **First Class with Superlative Distinction** if he/she secures not less than 75% of the marks in all the subjects and passes all the semesters in the first appearance itself and passes all subjects within the stipulated period of study  $2 / 3 / 3\frac{1}{2} / 4$  years [Full Time(lateral entry)/Full Time/Sandwich/Part Time] without any break in study.

#### **First Class with Distinction:**

A candidate will be declared to have passed in **First Class with Distinction** if he/she secures not less than 75% of the aggregate marks in all the semesters put together and passes all the semesters except the I and II semester in the first appearance itself and passes all subjects within the stipulated period of study 2 / 3 / 3½ / 4 years [Full time(lateral entry)/Full Time/Sandwich/Part Time] without any break in study.

#### **First Class:**

A candidate will be declared to have passed in **First Class** if he/she secures not less than 60% of the aggregate marks in all the semesters put together and passes all the subjects within the stipulated period of study 2 / 3 / 3½ / 4 years [Full time(lateral entry)/Full Time/Sandwich/Part Time] without any break in study.

#### Second Class:

All other successful candidates will be declared to have passed in **Second Class**.

The above classifications are also applicable for the Sandwich / Part-Time students who pass out Final Examination from October 2023 /April 2024 onwards (both joined First Year in 2020 -2021)

#### 15. <u>Duration of a period in the Class Time Table:</u>

The duration of each period of instruction is 1 hour and the total period of instruction hours excluding interval and lunch break in a day should be uniformly maintained as 7 hours corresponding to 7 periods of instruction (Theory & Practical).

#### **ANNEXURE I**

# STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN AUTOMOBILE ENGINEERING SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020-2021 onwards)

## **CURRICULUM OUTLINE**

#### THIRD SEMESTER

| Col.                     | Subject    | Outline4                                                     | Hours Per Week |         |           |       |  |
|--------------------------|------------|--------------------------------------------------------------|----------------|---------|-----------|-------|--|
| No. Code                 |            | Subject                                                      | Theory         | Drawing | Practical | Total |  |
| 1                        | 4021310    | Mechanics of Materials and Material Science                  | 5              | -       | -         | 5     |  |
| 2                        | 4021320    | Production Technology                                        | 5              | -       | -         | 5     |  |
| 3                        | 4020330    | Measurements and Metrology *                                 | 5              | -       | -         | 5     |  |
| 4                        | 4021340    | Fluid Mechanics and Pneumatics                               | 5              | -       | -         | 5     |  |
| 5                        | 4021350    | Material Testing and Fluids Mechanics & Pneumatics Practical | -              | -       | 4         | 4     |  |
| 6                        | 4021360    | Production Technology<br>Practical                           | -              | -       | 4         | 4     |  |
| 7                        | 4020370    | Measurements and<br>Metrology Practical *                    | -              | -       | 4         | 4     |  |
|                          |            |                                                              | 20             | -       | 12        | 32    |  |
| 1                        | ktra / Co- | Physical Education                                           | -              | -       | -         | 2     |  |
| Curricular<br>activities |            | Library                                                      | -              | -       | -         | 1     |  |
|                          | Total      |                                                              |                |         |           | 35    |  |

<sup>\*</sup> Common with Mechanical Engineering

#### **FOURTH SEMESTER**

| Col.                                    | Subject | Cubicot                                                 | Hours Per Week |         |           |       |  |
|-----------------------------------------|---------|---------------------------------------------------------|----------------|---------|-----------|-------|--|
| No.                                     | Code    | Subject                                                 | Theory         | Drawing | Practical | Total |  |
| 1                                       | 4021410 | Heat Power Engineering                                  | 5              | -       | -         | 5     |  |
| 2                                       | 4021420 | Vehicle Body<br>Engineering                             | 5              | -       | -         | 5     |  |
| 3                                       | 4021430 | Automotive Electrical and Electronics Systems           | 5              | -       | -         | 5     |  |
| 4                                       | 4021440 | Automotive Engines                                      | 5              | -       | -         | 5     |  |
| 5                                       | 4020350 | Machine Drawing and CAD Practical *                     | -              | 2       | 2         | 4     |  |
| 6                                       | 4021460 | Automotive Electrical and Electronics Systems Practical | -              | -       | 4         | 4     |  |
| 7                                       | 4021470 | Automotive Engines<br>Practical                         | 1              | -       | 4         | 4     |  |
|                                         |         |                                                         | 20             | 2       | 10        | 32    |  |
| Extra / Co-<br>Curricular<br>activities |         | Physical Education                                      | -              | -       | -         | 2     |  |
|                                         |         | Library                                                 | -              | -       | -         | 1     |  |
|                                         | Total   |                                                         |                |         |           | 35    |  |

<sup>\*</sup> Common with Mechanical Engineering

## FIFTH SEMESTER

| Col.        | Subject                 | Subject                                                  |        | Hours P | er Week   |       |
|-------------|-------------------------|----------------------------------------------------------|--------|---------|-----------|-------|
| No.         | Code                    | Subject                                                  | Theory | Drawing | Practical | Total |
| 1           | 4021510                 | Fuels, Combustion and Emission Control                   | 6      | -       | -         | 6     |
| 2           | 4021520                 | Power units and Transmission                             | 5      | -       | -         | 5     |
| Elect       | ive Theory -            |                                                          | 1      | 1       |           |       |
|             | 4021531                 | Two-Wheeler and<br>Three-Wheeler<br>Technology           | 5      | -       | -         |       |
| 3           | 4021532                 | Tractor and Farm Equipment                               | 5      | -       | -         | 5     |
|             | 4021533                 | Industrial Automation                                    | 5      | -       | -         |       |
| 4           | 4021540                 | Automobile Servicing<br>Practical                        | -      | -       | 4         | 4     |
| 5           | 4021550                 | Engine Testing and<br>Emission Measurement<br>Practical  | -      | -       | 4         | 4     |
| Elect       | ive Practical           | - I                                                      |        |         |           |       |
|             | 4021561                 | Two-Wheeler and<br>Three-Wheeler<br>Technology Practical | -      | -       | 4         |       |
| 6           | 4021562                 | Tractor and Farm Equipment Practical                     | -      | -       | 4         | 4     |
|             | 4021563                 | Industrial Automation<br>Practical                       | -      | -       | 4         |       |
| 7           | 4020570                 | Entrepreneurship and Startup *                           | -      | -       | 4         | 4     |
|             |                         |                                                          | 16     | -       | 16        | 32    |
| Extra / Co- | κtra / Co-<br>urricular | Physical Education                                       | -      | -       | -         | 2     |
|             | nctivities              | Library                                                  | -      | -       | -         | 1     |
|             |                         | Total                                                    |        |         |           | 35    |

<sup>\*</sup> Common with Mechanical Engineering

#### **SIXTH SEMESTER**

| Col.   | Subject                 | Subject                                                          | Hours Per Week |         |           |       |
|--------|-------------------------|------------------------------------------------------------------|----------------|---------|-----------|-------|
| No.    | Code                    | Subject                                                          | Theory         | Drawing | Practical | Total |
| 1      | 4021610                 | Hybrid Electrical<br>Vehicle and Policies                        | 6              | -       | -         | 6     |
| 2      | 4021620                 | Industrial Management<br>and Transport<br>Engineering            | 5              | -       | -         | 5     |
| Electi | ive Theory - I          | I                                                                |                |         |           |       |
|        | 4020531                 | Computer Integrated Manufacturing *                              | 5              | -       | -         |       |
| 3      | 4021632                 | Heavy Vehicle<br>Engineering                                     | 5              | -       | -         | 5     |
|        | 4021633                 | Heating Ventilation and Air Conditioning Systems                 | 5              | -       | -         |       |
| 4      | 4021640                 | Hybrid Electrical<br>Vehicle Practical                           | -              | -       | 5         | 5     |
| Electi | ive Practical           | - II                                                             |                |         |           |       |
|        | 4020561                 | Computer Integrated Manufacturing Practical *                    | -              | -       | 5         |       |
| 5      | 4021652                 | Heavy Vehicle<br>Engineering Practical                           | -              | -       | 5         | 5     |
|        | 4021653                 | Heating Ventilation and<br>Air Conditioning<br>Systems Practical | -              | -       | 5         |       |
| 6      | 4021660                 | Project work & Internship                                        | -              | -       | 6         | 6     |
|        |                         | 16                                                               | -              | 16      | 32        |       |
|        | ktra / Co-<br>urricular | Physical Education                                               | -              | -       | -         | 2     |
|        | ectivities              | Library                                                          | -              | -       | -         | 1     |
|        |                         | Total                                                            |                |         |           | 35    |

<sup>\*</sup> Common with Mechanical Engineering

#### **ANNEXURE II**

# STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN AUTOMOBILE ENGINEERING SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020-2021 onwards) **SCHEME OF EXAMINATION** 

#### **1021 DIPLOMA IN AUTOMOBILE ENGINEERING (FULL TIME)**

#### **III Semester**

|                 |                                                                    | Marks # # # # # # # # # # # # # # # # # # # |                       |       |                           |                        |
|-----------------|--------------------------------------------------------------------|---------------------------------------------|-----------------------|-------|---------------------------|------------------------|
| Subject<br>Code | Subject                                                            | Internal<br>Assessment                      | Board<br>Examination# | Total | Minimum marks<br>for pass | Duration of Exam Hours |
| 4021310         | Mechanics of Materials and Material Science                        | 25                                          | 100                   | 100   | 40                        | 3                      |
| 4021320         | Production Technology                                              | 25                                          | 100                   | 100   | 40                        | 3                      |
| 4020330         | Measurements and Metrology *                                       | 25                                          | 100                   | 100   | 40                        | 3                      |
| 4021340         | Fluid Mechanics and Pneumatics                                     | 25                                          | 100                   | 100   | 40                        | 3                      |
| 4021350         | Material Testing and Fluids<br>Mechanics & Pneumatics<br>Practical | 25                                          | 100                   | 100   | 50                        | 3                      |
| 4021360         | Production Technology<br>Practical                                 | 25                                          | 100                   | 100   | 50                        | 3                      |
| 4020370         | Measurements and Metrology<br>Practical *                          | 25                                          | 100                   | 100   | 50                        | 3                      |

<sup>\*</sup> Common with Mechanical Engineering

<sup>#</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

## **IV Semester**

|                 |                                                         | Marks                  |                        |       | S.                        |                        |
|-----------------|---------------------------------------------------------|------------------------|------------------------|-------|---------------------------|------------------------|
| Subject<br>Code | Subject                                                 | Internal<br>Assessment | Board<br>Examination # | Total | Minimum marks<br>for pass | Duration of Exam Hours |
| 4021410         | Heat Power Engineering                                  | 25                     | 100                    | 100   | 40                        | 3                      |
| 4021420         | Vehicle Body Engineering                                | 25                     | 100                    | 100   | 40                        | 3                      |
| 4021430         | Automotive Electrical and Electronics Systems           | 25                     | 100                    | 100   | 40                        | 3                      |
| 4021440         | Automotive Engines                                      | 25                     | 100                    | 100   | 40                        | 3                      |
| 4020350         | Machine Drawing and CAD<br>Practical *                  | 25                     | 100                    | 100   | 50                        | 3                      |
| 4021460         | Automotive Electrical and Electronics Systems Practical | 25                     | 100                    | 100   | 50                        | 3                      |
| 4021470         | Automotive Engines Practical                            | 25                     | 100                    | 100   | 50                        | 3                      |

<sup>\*</sup> Common with Mechanical Engineering

<sup>#</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

#### **V** Semester

|                        |                                                        |                        | Marks                  |       | (0                        |                        |
|------------------------|--------------------------------------------------------|------------------------|------------------------|-------|---------------------------|------------------------|
| Subject<br>Code        | Subject                                                | Internal<br>Assessment | Board<br>Examination # | Total | Minimum marks<br>for pass | Duration of Exam Hours |
| 4021510                | Fuels, Combustion and<br>Emission Control              | 25                     | 100                    | 100   | 40                        | 3                      |
| 4021520                | Power units and Transmission                           | 25                     | 100                    | 100   | 40                        | 3                      |
| Elective Th            | neory - I                                              |                        |                        |       |                           |                        |
| 4021531                | Two-Wheeler and Three-<br>Wheeler Technology           | 25                     | 100                    | 100   |                           |                        |
| 4021532                | Tractor and Farm Equipment                             | 25                     | 100                    | 100   | 40                        | 3                      |
| 4021533                | Industrial Automation                                  | 25                     | 100                    | 100   |                           |                        |
| 4021540                | Automobile Servicing Practical                         | 25                     | 100                    | 100   | 50                        | 3                      |
| 4021550                | Engine Testing and Emission<br>Measurement Practical   | 25                     | 100                    | 100   | 50                        | 3                      |
| Elective Practical - I |                                                        |                        |                        |       |                           |                        |
| 4021561                | Two-Wheeler and Three-<br>Wheeler Technology Practical | 25                     | 100                    | 100   |                           |                        |
| 4021562                | Tractor and Farm Equipment<br>Practical                | 25                     | 100                    | 100   | 50                        | 3                      |
| 4021563                | Industrial Automation Practical                        | 25                     | 100                    | 100   |                           |                        |
| 4020570                | Entrepreneurship and Startup *                         | 25                     | 100                    | 100   | 50                        | 3                      |

<sup>\*</sup> Common with Mechanical Engineering

<sup>#</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

## **VI Semester**

|                 |                                                               |                        | Marks                  |       | (0                        |                        |  |
|-----------------|---------------------------------------------------------------|------------------------|------------------------|-------|---------------------------|------------------------|--|
| Subject<br>Code | Subject                                                       | Internal<br>Assessment | Board<br>Examination # | Total | Minimum marks<br>for pass | Duration of Exam Hours |  |
| 4021610         | Hybrid Electrical Vehicle and Policies                        | 25                     | 100                    | 100   | 40                        | 3                      |  |
| 4021620         | Industrial Management and Transport Engineering               | 25                     | 100                    | 100   | 40                        | 3                      |  |
| Elective The    | eory - II                                                     |                        |                        |       |                           |                        |  |
| 4020531         | Computer Integrated Manufacturing *                           | 25                     | 100                    | 100   |                           |                        |  |
| 4021632         | Heavy Vehicle Engineering                                     | 25                     | 100                    | 100   | 40                        | 3                      |  |
| 4021633         | Heating Ventilation and Air<br>Conditioning Systems           | 25                     | 100                    | 100   |                           |                        |  |
| 4021640         | Hybrid Electrical Vehicle<br>Practical                        | 25                     | 100                    | 100   | 50                        | 3                      |  |
| Elective Pra    | Elective Practical - II                                       |                        |                        |       |                           |                        |  |
| 4020561         | Computer Integrated Manufacturing Practical *                 | 25                     | 100                    | 100   |                           |                        |  |
| 4021652         | Heavy Vehicle Engineering<br>Practical                        | 25                     | 100                    | 100   | 50                        | 3                      |  |
| 4021653         | Heating Ventilation and Air<br>Conditioning Systems Practical | 25                     | 100                    | 100   |                           |                        |  |
| 4021660         | Project Work & Internship                                     | 25                     | 100                    | 100   | 50                        | 3                      |  |

<sup>\*</sup> Common with Mechanical Engineering

<sup>#</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

## 1021 Diploma in Automobile Engineering (Full Time) N – Scheme

(To be implemented for the students admitted from the year 2020-2021 onwards)

## <u>List of Equivalent Subjects for M- Scheme to N - Scheme</u>

#### **III Semester**

| Subject<br>Code | м ѕснеме                                         | Subject<br>Code | N SCHEME                     |
|-----------------|--------------------------------------------------|-----------------|------------------------------|
| 32031           | Strength of Materials                            | 4020310         | Strength of Materials        |
| 32032           | Manufacturing Processes                          | 4020320         | Manufacturing Technology - I |
| 32033           | Machine Drawing                                  |                 | No Equivalent                |
| 32034           | Computer Applications and CAD Practical          |                 | No Equivalent                |
| 32035           | Foundry and Welding Practical                    |                 | No Equivalent                |
| 32036           | Lathe and Drilling Practical                     |                 | No Equivalent                |
| 32137           | Strength of Materials and<br>Metrology Practical |                 | No Equivalent                |

#### **IV Semester**

| Subject<br>Code | M SCHEME                                     | Subject<br>Code | N SCHEME                                                |
|-----------------|----------------------------------------------|-----------------|---------------------------------------------------------|
| 32141           | Thermal Engineering                          | 4021410         | Heat Power Engineering                                  |
| 32042           | Special Machines                             | 4020420         | Manufacturing Technology - II                           |
| 32143           | Automobile Engines                           | 4021440         | Automotive Engines                                      |
| 32144           | Autotronics                                  | 4021430         | Automotive Electrical and Electronics Systems           |
| 32145           | Thermal Engineering and IC Engines Practical | 4021470         | Automotive Engines Practical                            |
| 32046           | Special Machines Practical                   | 4020460         | Manufacturing Technology - II<br>Practical              |
| 32147           | Autotronics Practical                        | 4021460         | Automotive Electrical and Electronics Systems Practical |

## **V** Semester

| Subject<br>Code | M SCHEME                                              | Subject<br>Code | N SCHEME                                           |
|-----------------|-------------------------------------------------------|-----------------|----------------------------------------------------|
| 32151           | Industrial Management and Road Transport organization | 4021620         | Industrial Management and<br>Transport Engineering |
| 32152           | Industrial Automation                                 |                 | No Equivalent                                      |
| 32153           | Automobile Chassis and Transmission                   | 4021520         | Power units and Transmission                       |
| ELECTIV         | /ETHEORY-I                                            |                 |                                                    |
| 32071           | Total Quality Management                              |                 | No Equivalent                                      |
| 32172           | Alternative fuels and Energy<br>Systems               |                 | No Equivalent                                      |
| 32173           | Automobile Maintenance & Emission Control             |                 | No Equivalent                                      |
| 32055           | Process Automation Practical                          |                 | No Equivalent                                      |
| 32156           | Automobile Chassis and<br>Transmission Practical      |                 | No Equivalent                                      |
| 30002           | Life and Employability Skills<br>Practical.           | 40001           | Communication Skill Practical                      |

## **VI Semester**

| Subject<br>Code | M SCHEME                                          | Subject<br>Code | N SCHEME                                                      |
|-----------------|---------------------------------------------------|-----------------|---------------------------------------------------------------|
| 32161           | Automobile Body Building<br>Engineering           | 4021420         | Vehicle Body Engineering                                      |
| 32062           | Computer Aided Design and Manufacturing           | 4020531         | Computer Integrated Manufacturing                             |
| ELECTIV         | E THEORY- II                                      |                 |                                                               |
| 32181           | Two and Three Wheeler Technology                  | 4021531         | Two-Wheeler and Three-Wheeler Technology                      |
| 32182           | Tractor and Farm Equipments                       | 4021532         | Tractor and Farm Equipment                                    |
| 32183           | Automobile Air-Conditioning System                | 4021633         | Heating Ventilation and Air<br>Conditioning Systems           |
| 32064           | Computer Aided Design and Manufacturing Practical | 4020561         | Computer Integrated<br>Manufacturing Practical                |
| 32165           | Automobile Workshop Practical                     |                 | No Equivalent                                                 |
| ELECTIV         | E PRACTICAL - II                                  |                 |                                                               |
| 32184           | Two and Three<br>WheelerTechnology Practical      | 4021561         | Two-Wheeler and Three-Wheeler<br>Technology Practical         |
| 32185           | Tractor and Farm Equipments Practical             | 4021562         | Tractor and Farm Equipment<br>Practical                       |
| 32186           | Automobile Air-Conditioning System Practical      | 4021653         | Heating Ventilation and Air<br>Conditioning Systems Practical |
| 32167           | Project Work                                      |                 | No Equivalent                                                 |

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021310

Semester : III

Subject Title : Mechanics of Materials and Material Science

#### **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject                     | Instructions |          | Examination            |                       |       |          |
|-----------------------------|--------------|----------|------------------------|-----------------------|-------|----------|
| 4021310                     | Hours /      | Hours /  | Marks                  |                       |       |          |
| Mechanics of  Materials and | Week         | Semester | Internal<br>Assessment | Board<br>Examinations | Total | Duration |
| Material Science            | 5            | 80       | 25                     | 100*                  | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

#### **Topics and Allocation of Hours**

| Unit | Topics                                                                                              | Hours |  |
|------|-----------------------------------------------------------------------------------------------------|-------|--|
| I    | Properties of Materials and Heat Treatment of Metals                                                |       |  |
| II   | Materials Processes, Ferrous, Non Ferrous Metals, Non-<br>Metallic Materials and Special Materials. |       |  |
| III  | III Direct Stresses and Strains, Geometrical Properties of Sections                                 |       |  |
| IV   | IV Shear Force and Bending Moments, Friction                                                        |       |  |
| V    | V Torsion of Shaft and springs                                                                      |       |  |
|      | Test & Revision                                                                                     |       |  |
|      | Total                                                                                               |       |  |

#### **RATIONALE:**

Mechanics of Materials and Material Science is a core subject which aims at enabling the student to understand and analyze various materials used in automobile industry and types of load, stress and strain along with main causes of change in physical properties. All Automobile parts are subjected to different loading and behave in specific way. The subject is pre-requisite for understanding principle of machine design and strengths of various materials used in automobile industries. Understanding the mechanical properties of materials will help in selecting the suitable materials for automobile engineering applications.

#### **OBJECTIVES:**

At the end of the course, the students will be able to

- Determine the simple stress and strain for the engineering materials subject to tension, compression and shear load
- Determine the moment of Inertia of various sections used in industries.
- Define and explain the law of forces and friction.
- Draw the shear force and bending moments diagram of the beam for different loading
- Assess the effect of load on the torsion of shaft and spring.
- State various mechanical properties of materials.
- Describe the plastic deformation of the metals
- Describe the various heat treatment process for engineering materials
- Explain the processing of materials and non-metallic materials.
- Explain the various materials used in automobile components

## 4021310 - MECHANICS OF MATERIALS AND MATERIAL SCIENCE <u>DETAILED SYLLABUS</u>

Contents: Theory

| Unit | Name of the Topics                                                          | Hours |
|------|-----------------------------------------------------------------------------|-------|
| I    | PROPERTIES OF MATERIAL AND HEAT TREATMENT OF METALS                         |       |
|      | 1.1: Properties of material                                                 | 7     |
|      | Definition of mechanical properties – Compressive strength, tensile         |       |
|      | strength, ductility, brittleness, hardness, toughness, malleability, impact |       |
|      | strength, stiffness, fatigue, creep, Endurance limit, cyclic loading,       |       |
|      | repeated loading and fatigue loading. Atomic structure – Bonds –            |       |
|      | Primary bond and Secondary bonds – Crystals – Cubic structure –             |       |
|      | Simple Cubic structure, body centred Cubic structure – face centred         |       |
|      | Cubic structure Hexagonal closed packed structure –deformation of           |       |
|      | metal – Elastic and plastic deformation – Stress-strain diagram of ductile  |       |
|      | and brittle material – Slip and Twinning – Strain Hardening.                |       |
|      | 1.2: Heat Treatment of Metals:                                              | 6     |
|      | Heat treatment of metals –Cooling curve for solidification of pure metal –  |       |
|      | Phase diagram –Iron-carbon phase diagram – critical temperature on          |       |
|      | heating and cooling – cooling curve for pure iron –Normalizing, annealing   |       |
|      | hardening – Nitriding, cyaniding, carbonitriding, age hardening, flame      |       |
|      | and induction hardening. Description only                                   |       |
| II   | MATERIALS PROCESSES, FERROUS, NON FERROUS METALS,                           |       |
|      | NON METALLIC MATERIALS AND SPECIAL MATERIALS.                               |       |
|      | 2.1: Materials processes                                                    | 3     |
|      | Introduction - approaches to material processes - materials process         |       |
|      | steps - process of metals – process of glass - process of polymers.         |       |
|      | 2.2 : Ferrous and Non Ferrous metals                                        | 6     |
|      | Properties and automobile applications of Cast iron, Plain carbon steel,    |       |
|      | High Strength steel and Stainless steel.                                    |       |
|      | Alloy steel - need of alloying, alloying elements, effect of alloying on    |       |
|      | properties, automobile application - Aluminium alloy - Copper alloy         |       |
|      | 2.3 : Non metallic materials and Special materials:                         | 4     |
|      | Non metallic materials – composition, characteristics and automobile        |       |
|      | application of plastics, Polymer matrix composites and glass.               |       |

|     | Introduction and automotive applications of Smart materials &                 |   |  |  |
|-----|-------------------------------------------------------------------------------|---|--|--|
|     | Nanomaterials.                                                                |   |  |  |
| III | DIRECT STRESSES AND STRAINS, GEOMETRICAL PROPERTIES                           |   |  |  |
|     | OF SECTIONS                                                                   |   |  |  |
|     | 3.1: Direct Stresses and Strains                                              | 8 |  |  |
|     | Introduction - Definition and explanation of tensile, compressive, shear,     |   |  |  |
|     | stress and strain - behaviour of ductile material under tension- limit of     |   |  |  |
|     | proportionality, elastic limit, yield point, breaking point, ultimate stress, |   |  |  |
|     | percentage elongation and percentage reduction in area - problems -           |   |  |  |
|     | Hooke's law – Young's modulus – working stress – factor of safety - bars      |   |  |  |
|     | of varying section – shear stress and shear strain – modulus of rigidity –    |   |  |  |
|     | problems in tension, compression and shear. Lateral strain – Poisson's        |   |  |  |
|     | ratio – volumetric strain – bulk modulus – elastic constants and their        |   |  |  |
|     | relationship – problems connecting lateral, linear and volumetric             |   |  |  |
|     | deformation – problems on elastic constants.                                  |   |  |  |
|     | 3.2: Geometrical properties of sections                                       | 8 |  |  |
|     | Introduction - centre of gravity - centroid - position of centroids of plane  |   |  |  |
|     | geometrical figures such as rectangle, triangle, circle and trapezium -       |   |  |  |
|     | determination of centroid of angles, channels, I and T sections –             |   |  |  |
|     | problems - moment of inertia - definition - parallel axes theorem -           |   |  |  |
|     | perpendicular axes theorem - M.I of angle, channel, I and T sections - no     |   |  |  |
|     | derivations required – polar moment of inertia – radius of gyration –         |   |  |  |
|     | problems.                                                                     |   |  |  |
| IV  | SHEAR FORCE AND BENDING MOMENTS, THEORY OF BENDING                            |   |  |  |
|     | AND FRICTION                                                                  |   |  |  |
|     | 4.1: Shear Force and Bending Moments:                                         | 9 |  |  |
|     | Introduction – classification of beams – definition - shear force - bending   |   |  |  |
|     | moment - sign convention - types of loads - relation between load,            |   |  |  |
|     | shear force and bending moment – shear force diagram and bending              |   |  |  |
|     | moment diagram of cantilever and simply supported beam subjected to           |   |  |  |
|     | concentrated load and uniform distributed load only – maximum Bending         |   |  |  |
|     | moment - problems on shear force diagram and bending moment                   |   |  |  |
|     | diagram for cantilever and simply supported beam only.                        |   |  |  |

|   | 4.2: Theory of Bending                                                                                        | 5 |
|---|---------------------------------------------------------------------------------------------------------------|---|
|   | Theory of simple bending – derivation of bending equation $\frac{M}{I} = \frac{f}{y} = \frac{E}{R}$           |   |
|   | and assumptions used – neutral axis - bending stress distribution –                                           |   |
|   | moment of resistance – simple problem.                                                                        |   |
|   | 4.3 : Friction                                                                                                | • |
|   | Friction – force of friction – limiting friction – static friction – dynamic                                  | 2 |
|   | friction – laws of static and dynamic friction – angle of friction – co-                                      |   |
|   | efficient of friction.                                                                                        |   |
| V | TORSION OF SHAFT AND SPRINGS                                                                                  |   |
|   | 5.1: Torsion of Shaft:                                                                                        | 8 |
|   | Theory of torsion – Assumptions – torsion equation $\frac{T}{J} = \frac{f_S}{R} = \frac{C\theta}{l}$ strength |   |
|   | of solid and hollow shafts – power transmitted – Definition – Polar                                           |   |
|   | modulus – Torsional rigidity – strength and stiffness of shafts –                                             |   |
|   | comparison of hollow and solid shafts in weight and strength                                                  |   |
|   | considerations – Advantages of hollow shafts over solid shafts –                                              |   |
|   | Problems.                                                                                                     |   |
|   | 5.2: Springs:                                                                                                 | - |
|   | Types of springs – Laminated and coiled springs and applications –                                            | 7 |
|   | Types of coiled springs – Difference between open and closely coiled                                          |   |
|   | helical springs – closely coiled helical spring subjected to an axial load –                                  |   |
|   | problems to determine shear stress, deflection, stiffness and resilience of                                   |   |
|   | closed coiled helical springs                                                                                 |   |

#### **Reference Books**

- 1. R. S. Khurmi," Strength of Materials" S.Chand Publication, Ram Nagar, New Delhi
- 2. R.K.Rajput," Strength of Materials" S.Chand Publication, Ram Nagar, New Delhi
- 3. S.S.Rattan, "Strength of materials", Tata McGraw hill, New Delhi
- 4. R.K. Bansal, "Strength of Materials", Laxmi Publications Pvt. Ltd., New Delhi
- 5. N. Khurmi & R S Khurmi, "Applied Mechanics" S.Chand Publication ,Ram Nagar, New Delhi.
- 6. William F Smith, Javad Hashemi and Ravi Prakash, "Material Science and Engineering", McGraw Hill Education, Noida

- 7. Jason Rowe "Advanced Materials in Automotive Engineering" Woodhead Publishing
- 8. Brain Cantor, Patric Grant and Colin Johnston, "Automobile Engineering -Light weight, Functional and novel material, Taylor & Francis Group, New York and London
- 9. James Maxwell, "Plastics in the Automotive Industry", Woodhead Publishing
- 10. Lorraine F. Francis, "Materials Processing A Unified Approach to Processing of Metals, Ceramics and Polymers" Academic Press is an imprint of Elsevier.
- 11. S Sedha and R.SKhurmi, "Material science", S.Chand & Co ,Ram Nagar, New Delhi

#### Reference Web Link / Video

| Topic                           | Website        | Link                                                                                        |
|---------------------------------|----------------|---------------------------------------------------------------------------------------------|
| Strength of Materials           | Dote E-Lecture | https://www.youtube.com/watch?v=IT-<br>3In1szHY&list=PL1b9Ht9ISqIFInLTS7xxQ<br>6dRdIp4Jc8Vh |
| Strength of Materials           | NPTEL          | https://nptel.ac.in/noc/courses/noc21/SEM 2/noc21-ce38/                                     |
| Basics of Materials Engineering | NPTEL          | https://nptel.ac.in/noc/courses/noc21/SEM 2/noc21-me113/                                    |
| Materials Science               | NPTEL          | https://nptel.ac.in/courses/112/108/112108<br>150/                                          |

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021320

Semester : III

Subject Title : Production Technology

#### **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject                             | Instructions    |                     | Examination            |                          |       |          |
|-------------------------------------|-----------------|---------------------|------------------------|--------------------------|-------|----------|
| 4021320<br>Production<br>Technology | Hours /<br>Week | Hours /<br>Semester | Internal<br>Assessment | Marks Board Examinations | Total | Duration |
|                                     | 5               | 80                  | 25                     | 100*                     | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

#### **Topics and Allocation of Hours**

| Unit | Topics                                               |    |  |
|------|------------------------------------------------------|----|--|
| I    | Foundry Technology, Forging                          | 14 |  |
| П    | II Welding Technology                                |    |  |
| III  | III Theory of metal cutting and Centre Lathe, Shaper |    |  |
| IV   | IV Milling Machines and Drilling Machines            |    |  |
| V    | V Grinding and CNC Machines                          |    |  |
|      | Test & Revision                                      |    |  |
|      | Total                                                |    |  |

#### **RATIONALE**

Production Technology is a core subject. A diploma holder of Automobile engineering should be proficient in the use of manufacturing processes available. In the process of manufacturing we should possess adequate and through knowledge about the working of conventional as well as non-conventional machines. The topics included in this subject aims the skills of metal cutting, milling, grinding, and other machining processes which are very much essential for a technician. This will provide the students an opportunity to skill themselves for the industrial scenario.

#### **OBJECTIVES**

Students must be able to:

- Acquire Knowledge about types of pattern, casting, and moulding.
- Describe the various casting processes.
- Knowledge about various welding process and its working principle.
- Appreciate the safety practices used in welding.
- Acquire knowledge about forging technologies.
- Acquire knowledge about theory of metal cutting.
- Knowledge about the lathe and its working parts.
- Study the working of various machine tools: Shaper and milling.
- Study the milling procedure for spur helical and bevel gears.
- Study the various types of gear generating processes
- Study about the drilling process.
- Study the different types of grinders and grinding wheels.
- Study about the components and working CNC Turning and Milling machines.

## 4021320 PRODUCTION TECHNOLOGY <u>DETAILED SYLLABUS</u>

**Contents: Theory** 

| Unit | Name of the Topic                                                               |   |  |  |  |
|------|---------------------------------------------------------------------------------|---|--|--|--|
| I    | Foundry Technology: Introduction - Pattern: Definition - types of               |   |  |  |  |
|      | patterns: Solid, Split, Loose piece, Skeleton. Pattern materials –              |   |  |  |  |
|      | pattern allowances. Properties of moulding sand – List the major                |   |  |  |  |
|      | moulding tools and its description. Green sand moulding process                 |   |  |  |  |
|      | Moulding machines: construction and working principle of Jol                    |   |  |  |  |
|      | machine, Squeezer, Sand slinger. Core – core sand – properties. CO <sub>2</sub> |   |  |  |  |
|      | process core making. Construction and working principle of Cupola               |   |  |  |  |
|      | furnace, Electric arc furnace and induction furnace. Casting:                   |   |  |  |  |
|      | Introduction - Working principle of centrifugal casting - continuous            |   |  |  |  |
|      | casting. Defects in casting – causes and remedies.                              |   |  |  |  |
|      | <b>Forging:</b> Hot working, cold working – comparison and advantages.          | 3 |  |  |  |
|      | Description of rolling, drawing, bending, coining, embossing,                   |   |  |  |  |
|      | extrusion, drop forging, upset forging, press forging.                          |   |  |  |  |
| II   | Welding Technology: Arc Welding: Introduction - electrode -filler               | 7 |  |  |  |
|      | and flux materials –types of welding - Working principle, applications,         |   |  |  |  |
|      | advantages and disadvantages of Metal arc welding, Metal Inert gas              |   |  |  |  |
|      | (MIG) welding, Tungsten inert gas (TIG) welding, Submerged arc                  |   |  |  |  |
|      | welding, Electro slag welding.                                                  |   |  |  |  |
|      | Gas welding: Gas welding equipment - Types of flames - welding                  |   |  |  |  |
|      | techniques – filler rods - Flame cutting. Working principle of Oxy-             |   |  |  |  |
|      | acetylene welding – advantages – limitations. Inspection and testing            |   |  |  |  |
|      | of welded joints – destructive and non-destructive types of tests –             |   |  |  |  |
|      | magnetic particle test - radiographic and ultrasonic test - defects in          |   |  |  |  |
|      | welding – causes and remedies.                                                  |   |  |  |  |
| III  | Theory of metal cutting: Introduction – orthogonal cutting – oblique            | 3 |  |  |  |
|      | cutting - single point cutting tool - nomenclature - cutting tool               |   |  |  |  |
|      | materials – properties – tool wears – factors affecting tool life – cutting     |   |  |  |  |
|      | fluids.                                                                         |   |  |  |  |
|      | Centre Lathe: Introduction - specifications - simple sketch with                |   |  |  |  |

|    | principal parts. Construction and working of head stock – back geared        |    |
|----|------------------------------------------------------------------------------|----|
|    |                                                                              |    |
|    | type – all geared type. Feed mechanism - tumbler gear mechanism –            |    |
|    | quick change gear box – apron mechanism. Machining operations:               |    |
|    | straight turning – step turning - taper turning by different methods -       |    |
|    | thread cutting – boring – eccentric turning. Description of cutting          |    |
|    | speed – feed - depth of cut - metal removal rate. Work holding               |    |
|    | devices.                                                                     |    |
|    | Shaper: Introduction – specifications – principles of operations             | 3  |
|    | standard shaper – quick return mechanism - crank and slotted link –          |    |
|    | hydraulic shaper - feed mechanism.                                           |    |
| IV | Milling Machines: Types - column and knee type - universal milling           | 10 |
|    | machine - principles of operation - specification of milling machines.       |    |
|    | work holding devices - tool holding devices - arbor - stub arbor -           |    |
|    | spring collet – adapter. Milling cutters: cylindrical milling cutter -       |    |
|    | slitting cutter -side milling cutter - angle milling cutter - T-slot milling |    |
|    | cutter. Nomenclature of cylindrical milling cutter. Milling operations:      |    |
|    | straddle milling - gang milling - vertical milling attachment. Dividing      |    |
|    | head - indexing plate - linear indexing - simple indexing -compound          |    |
|    | indexing. Procedure for spur, helical and bevel gears. Generating            |    |
|    | Process: Gear shaper - gear hobbing - principle of operation only.           |    |
|    | Gear finishing processes: burnishing – shaving - grinding and lapping.       |    |
|    | <b>Drilling Machines:</b> Drilling machine: bench type - floor type - radial | 5  |
|    | type - gang drill – multi spindle type –Working principle of upright         |    |
|    | drilling machine and radial drilling machine. Drills - flat drills - twist   |    |
|    | drills – nomenclature of twist drill. Tool holding devices: drill chucks -   |    |
|    | socket and sleeve. Operation: Drilling - reaming - counter sinking -         |    |
|    | counter boring - spot facing – tapping - deep hole drilling.                 |    |
| V  | Grinding: Types and classification – working principle of pedestal           | 8  |
|    | grinders- cylindrical grinder - centerless grinders - surface grinder -      |    |
|    | tool and cutter grinder. Grinding wheels – abrasives - natural and           |    |
|    | artificial diamond wheels - bonds - grit, grade and structure of wheels      |    |
|    | - wheel shapes and sizes - standard marking systems of grinding              |    |
|    | wheels - selection of grinding wheel - mounting of grinding wheels -         |    |
|    |                                                                              |    |

| Dressing and Truing of wheels - Balancing of grinding wheels.         |   |
|-----------------------------------------------------------------------|---|
| CNC machines: Introduction - CNC turning machines - working           | 7 |
| principles of CNC slant bed turning centre. Tool holders – wok        |   |
| holding collets. CNC milling machines: Working principles of vertical |   |
| machining centre – Tool holders – Work holder – Automatic tool        |   |
| changer. Coordinate Measuring Machine – Principle of operation.       |   |
|                                                                       |   |

#### **Reference Books**

- Elements of workshop Technology Volume I & II Hajra Chowdry & Bhattacharaya -II<sup>th</sup> Edition - Media Promoters & Publishers Pvt. Ltd.
- 2. Introduction of basic manufacturing processes and workshop technology Rajendersingh New age International (P) Ltd. Publishers
- 3. Manufacturing process Begeman 5<sup>th</sup> Edition -McGraw Hill.
- 4. Workshop Technology- WAJ Chapman Volume I, II, & III Vima Books Pvt. Ltd.
- 5. Workshop Technology Raghuwanshi Khanna Publishers.
- 6. Production Technology, Edn. XII, Khanna Publishers.
- 7. Production Technology P. C. SHARMA Edn. X S.Chand& Co. Ltd.
- 8. Production Technology HMT Edn. 18 published by Tata McGraw Hill publishing Co. Ltd

#### Reference Web Link / Video

| Topic                                   | Website | Link                                               |
|-----------------------------------------|---------|----------------------------------------------------|
| Fundamentals of manufacturing processes | NPTEL   | https://nptel.ac.in/courses/112/107/112107<br>219/ |
| Manufacturing Processes I               | NPTEL   | https://nptel.ac.in/courses/112/107/112107<br>144/ |
| Manufacturing Processes II              | NPTEL   | https://nptel.ac.in/courses/112/105/112105<br>127/ |

## Blank Page

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

#### N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4020330

Semester : III

Subject Title : Measurements and Metrology

#### **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject       | Instructions |          |            | Examination  |       |          |
|---------------|--------------|----------|------------|--------------|-------|----------|
| 4020330       | Hours        | Hours /  |            | Marks        |       |          |
| 1020000       |              |          | Internal   | Board        |       | Duration |
| Measurements  | / Week       | Semester | Assessment | Examinations | Total |          |
| and Metrology | 5            | 80       | 25         | 100*         | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

#### **Topics and Allocation of Hours**

| Unit No | Topics                                 | Hours |  |
|---------|----------------------------------------|-------|--|
| I       | Basic Concepts of Measurements         | 15    |  |
| II      | Linear and Angular Measurements        | 15    |  |
| III     | Form Measurement                       | 15    |  |
| IV      | Advances in Metrology                  |       |  |
| V       | V Measurement of Mechanical Parameters |       |  |
|         | Test and Model Exam                    |       |  |
|         | Total                                  | 80    |  |

#### **RATIONALE:**

Measurements and metrology are the basic and prominent tools in all the industries in the present scenario. The students should be trained not only in manufacturing also they should have knowledge about the various measuring instruments which is used in industries. This will provide the students an opportunity to skill themselves for how to handle the various metrological equipment available to measure the dimensions of the components.

#### **OBJECTIVES**

- Study about the basic concepts of measurements.
- Acquire knowledge about precision and accuracy.
- Describe about the various linear and angular measurements.
- Acquire knowledge about the measurement of screw threads and gears.
- Study about the laser metrology and computer in metrology.
- Describe the measurement of mechanical parameters force, power and flow.

# 4020330 MEASUREMENTS AND METROLOGY DETAILED SYLLABUS

**Contents: Theory** 

| Unit | Name of the Topics                                                  | Hours |
|------|---------------------------------------------------------------------|-------|
| I    | BASIC CONCEPTS OF MEASUREMENTS                                      |       |
|      | Chapter: 1.1: Introduction                                          | 7     |
|      | Basic units - system concepts used in measuring technology -        |       |
|      | measuring instruments - length, angles and surface - scope of       |       |
|      | Metrology - standardization - international standardization, the    |       |
|      | bureau of Indian standards - legal Metrology - definition -         |       |
|      | applications - important elements of measurements - methods of      |       |
|      | measurements - needs for inspection - need for measurement -        |       |
|      | important terminology.                                              |       |
|      | Chapter: 1.2: Precision and accuracy                                | 8     |
|      | Precision - definition - accuracy - definition - difference between |       |
|      | precision and accuracy - factors affecting the accuracy of the      |       |

|     | measuring system - general rules for accurate measurements -              |   |
|-----|---------------------------------------------------------------------------|---|
|     | precautions for use of instruments so as to avoid in accuracy in          |   |
|     | measurements - reliability - definition - error - definition - sources of |   |
|     | errors - classification of error - compare systematic error and           |   |
|     | random error - selection of measuring instruments - symbols for           |   |
|     | metallurgical terms (ASME and ISO).                                       |   |
| II  | LINEAR AND ANGULAR MEASUREMENTS                                           |   |
|     | Chapter: 2.1: Linear measurements                                         | 7 |
|     | Classification of linear measurement instrument - construction and        |   |
|     | the principles only - Steel rule - callipers - outside calliper, inside   |   |
|     | calliper, Jenny caliper - combination set - feeler gauge - pitch screw    |   |
|     | gauge - Vernier caliper - digital caliper - Vernier height gauge-         |   |
|     | micrometer - inside micrometer - thread micrometer - optical              |   |
|     | micrometer - light wave micrometer - possible sources of errors in        |   |
|     | micrometers - slip gauges - requirements - Indian standard - care         |   |
|     | and use.                                                                  |   |
|     | Chapter: 2.2: Angular measurements                                        | 8 |
|     | Introduction - vernier bevel protractor - universal bevel protractor -    |   |
|     | optical bevel protractor. Sine bar - types - uses and limitations -       |   |
|     | working principle of clinometer, autocollimator, angle dekkor.            |   |
|     | Comparators - uses - application - classification of comparator -         |   |
|     | mechanical comparator, optical comparator, electrical comparator,         |   |
|     | pneumatic comparator - principles - advantages and disadvantages -        |   |
|     | compare comparator with measuring instruments - compare                   |   |
|     | electrical and mechanical comparators.                                    |   |
| III | FORM MEASUREMENT                                                          |   |
|     | Chapter: 3.1: Measurement of screw threads                                | 5 |
|     | Screw thread terminology - error in thread - measurement of various       |   |
|     | elements of thread (description only) - thread gauges - classification    |   |
|     | - plug screw gauges, ring screw gauges, caliper gauges - adjustable       |   |
|     | thread gauge - gauging of taps - function of various types of gauges      |   |
|     | - floating carriage micrometer.                                           |   |
|     |                                                                           |   |
| ĺ   |                                                                           |   |

### **Chapter: 3.2: Measurement of gears** 10 Introduction - types of gear - gear terminology - gear errors - spur gear measurement - run out, tooth measurement, profile measurement, lead checking, backlash checking, tooth thickness measurement - vernier gear tooth caliper - David brown tangent comparator - constant chord method - measurement of concentricity, alignment checking - Parkinson gear tester - Rolling gear testing machine - radius measurement - radius of circle - surface finish measurement - classification of geometrical irregularities - elements of surface texture - methods of measuring surface finish measuring surface roughness - tracer type profilogram - double microscope. IV **ADVANCES IN METROLOGY** 7 Chapter: 4.1: Laser Metrology Basic concepts of lasers - types of lasers - uses, advantages and applications - laser telemetric system - laser and LED based distance measuring instruments - scanning laser gauge - photodiode array imaging - diffraction pattern technique - laser triangulation sensors - two frequency laser interferometer - gauging wire diameter from the diffraction pattern formed in laser - interferometry - use of laser in interferometry - interferometer - standard interferometer, interferometer, AC interferometer, Michelson single beam interferometer, dual frequency laser interferometer - Twyman green interferometer - applications. 7 **Chapter: 4.2: Computer in Metrology** Coordinating measuring machine - introduction - types of measuring machines - types of CMM - futures of CMM - causes of errors in CMM - 3 co-ordinate measuring machine - performance of CMM applications - advantages disadvantages - computer controlled coordinating measuring machine - mechanical system of computer controlled CMMs - trigger type probe system, measuring type prop system, features of CNC and CMM - features of CMM software factors affecting CMM - digital devices - Computer based inspection

- Computer aided inspection using robots.

| V | MEASUREMENT OF MECHANICAL PARAMETERS                                    |   |
|---|-------------------------------------------------------------------------|---|
|   | Chapter: 5.1: Force                                                     | 6 |
|   | Measurement of force - Direct methods - equal arm balance,              |   |
|   | unequal arm balance, multiple lever system, pendulum scale -            |   |
|   | indirect methods - electromagnetic balance - load cells - hydraulic     |   |
|   | load cell, pneumatic load cell, strain gauge load cell, shear type load |   |
|   | cell, electronic weighing system. Torque measurement - torque           |   |
|   | measurement using strain gauge - laser optical torque measurement       |   |
|   | - stroboscope for torque measurement.                                   |   |
|   | Chapter: 5.2: Measurement of power                                      | 4 |
|   | Mechanical dynamometer - DC dynamometer - inductor                      |   |
|   | dynamometer - hydraulic dynamometer - diaphragm pressure                |   |
|   | sensor - deform cage with LVDT - diaphragm gauge with strain            |   |
|   | gauges - piezoelectric sensors.                                         |   |
|   | Chapter: 5.3: Measurement of flow                                       | 4 |
|   | Types of flow metres - rotameter, electromagnetic flow metre, hot       |   |
|   | wire anemometer, ultrasonic flow metre, laser Doppler anemometer        |   |
|   | (LDA) - reference beam mode, interference French mode.                  |   |

#### Reference Books:

- 1. Mechanical Measurements and Instrumentation, Rajput R K, S.K.Kataria and Sons.
- 2. Mechanical Measurement and Control, Jalgaonkar R.V, Everest Publishing House.
- 3. Mechanical and Industrial Measurements, Jain R K, Khanna Publications.
- 4. Instrumentation Devices and Systems, Narang C S, Tata McGraw Hill Publications.
- 5. Instrumentation, Measurement and Analysis, Nakra B.C, Chaudhary K.K, Tata McGraw Hill Publications.

### Reference Web Link / Video

| Topic                 | Website | Link                                               |
|-----------------------|---------|----------------------------------------------------|
| Engineering Metrology | NPTEL   | https://nptel.ac.in/courses/112/104/112104<br>250/ |
| Metrology             | NPTEL   | https://nptel.ac.in/courses/112/106/112106<br>179/ |

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021340

Semester : III

Subject Title : Fluid Mechanics and Pneumatics

#### **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject          | Instructions  |          |            | Examination  | 1        |        |
|------------------|---------------|----------|------------|--------------|----------|--------|
| 4021340          | Hours /       | Hours /  | Marks      |              |          |        |
| Fluid            | Week Semester | Internal | Board      | Total        | Duration |        |
| Mechanics<br>and |               |          | Assessment | Examinations |          |        |
| Pneumatics       | 5             | 80       | 25         | 100*         | 100      | 3 Hrs. |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

#### **Topics and Allocation of Hours**

| Unit     | Topics                                              |    |
|----------|-----------------------------------------------------|----|
| I        | Properties of Fluid and Fluid Static                | 15 |
| II       | Fluid Dynamic, kinematics and Hydraulic Machinery's | 15 |
| III      | Hydraulic systems and its components                | 14 |
| IV       | Hydraulic circuits and hydro-pneumatics             |    |
| V        | V Pneumatic Systems, components and circuits        |    |
| Test & R | Test & Revision                                     |    |
| Total    |                                                     |    |

#### **RATIONALE**

Knowledge of fluid properties, fluid flow, hydraulic and pneumatic is essential in all fields of engineering. Fluid mechanics and pneumatics have important role in the automobile application like lubrication system, cooling system, combustion process etc., and also in most of the automated industry applications. This subject requires knowledge of basic engineering sciences, applied mechanics, mathematics etc.

#### **OBJECTIVES**

At the end of the course, the students will be able

- Define various properties of fluids
- State and explain Pascal's law and its applications
- Explain the working of pressure measuring devices
- State continuity equation, Bernoulli's equation and its applications.
- Estimate various losses in flow through pipes.
- Draw the construction, working of hydraulic pumps and turbines.
- Explain the elements of pneumatics system
- Draw pneumatic circuits for industrial application
- Draw hydraulic circuits for industrial application
- State the important of hydro-pneumatic systems
- Compare pneumatic, hydraulic and hydro-pneumatic

# 4021340 FLUID MECHANICS AND PNEUMATICS <u>DETAILED SYLLABUS</u>

Contents: Theory

| Unit | Name of the Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hours |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| ı    | PROPERTIES OF FLUID AND FLUID STATIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|      | 1.1: Properties of fluid  Introduction –Fluid Mechanics –Definition of Fluid - Types of fluid.  Properties of Fluid – Density, Specific Weight, Specific Volume, Specific gravity - Simple problem - Viscosity, Absolute Viscosity, Kinematics Viscosity, Compressibility, adhesion, Cohesion, surface tension, capillarity and Bulk Modulus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6     |
|      | 1.2: Fluid Static  Fluid pressure at a point - Pascal's Law - Proof - Application - Hand operated Hydraulic Jack and Hydraulic Press. Pressure head-atmospheric, gauge, vacuum and absolute pressures - simple problems - Pressure measurements by piezometer tube, simple manometer, differential manometer and inverted differential manometer - problems - Mechanical pressure gauges - bourdon tube pressure gauge, diaphragm pressure gauge and Dead weight pressure gauge.                                                                                                                                                                                                                                                                                                                                                        | 9     |
| II   | FLUID DYNAMIC AND KINEMATICS, HYDRAULIC MACHINERY'S  2.1: Fluid Dynamic and kinematics  Introduction - Types of fluid flow – steady and unsteady flow, uniform and non-uniform flow, laminar and turbulent flow, compressible and incompressible flow, rotational and irrotational flow - Reynolds number - Rate of flow-Continuity equations - energies of fluid-simple problems. Bernoulli's equations - statement, assumptions and proof – applications of Bernoulli's -pitot tube, venturimeter, and orificemeter – Simple Problems. Orifice – types of orifice – vena contracta – co-efficient of contraction – co-efficient of velocity – co-efficient discharge – simple problems. law of fluid friction - hydraulic gradient line – total energy line – wetted perimeter – hydraulic mean radius - loss of head in pipe - Major | 12    |

|     | losses – loss of head due to friction Darcy - Weisbach equation and Chezy's equation – problems- Minor losses and its types  2.2: Hydraulic Machinery's:  Pelton wheel turbine – Francis turbine – single stage centrifugal pump – double acting reciprocating pump – submergible pump.                                                                                                                                                                                                                                                                                                              | 3  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| III | HYDRAULIC SYSTEMS AND ITS COMPONENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|     | 3.1: Hydraulic pump and actuator  Fluid Power – Application of fluid power - service properties of hydraulic fluids- Hydraulic system Elements - Pump – Positive displacement Pump- External Gear Pump, Internal Gear Pump, Vane pump, Piston pump - Hydraulic actuator - Linear actuator - Single acting cylinder – Double acting cylinder – Telescopic cylinder –Rotary actuator - Hydraulic Motor – Gear type, vane type and piston type motor.                                                                                                                                                   | 7  |
|     | 3.2: Hydraulic valves and accessories  Directional Control valve: Types – Seat valve and spool valve – operating method – Construction of 2,3 and 4way directional control valve. Pressure control valve: Pressure relief valve Compound relief valve. Flow control valve - Unloading valve – sequence valve – counterbalance valve – brake valve – pressure reducing valve –hydraulic intensifier.  Hydraulic accumulators – Reservoirs and accumulators - Types – Dead weight, spring loaded and gas loaded type. Filters – Seals and its classification – Filters and its types— Filter location. | 7  |
| IV  | HYDRAULIC CIRCUITS AND HYDRO-PNEUMATIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|     | 4.1: Hydraulic Circuits  ISO Symbol of hydraulic components - Direst operation of single acting cylinder, double acting cylinder and hydraulic motor. Speed Control of hydraulic cylinder and Speed Control of hydraulic Motor— Double pump. Hydraulic circuit: sequencing circuit — counterbalancing circuit — Regeneration circuit - Braking circuit — Intensifier circuit — Accumulator circuit — synchronizing circuit - Two hand safety circuit - Fail-safe control circuit by using emergency cut-off valve.                                                                                   | 11 |

| Hydraulic circuit for operation of shaper machine, vertical milling machine     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and surface grinder                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.2: Hydro-pneumatic                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Types – Air-oil reservoir, Air-oil cylinder, air-oil intensifier –Comparison of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| pneumatic, hydraulic and hydro-pneumatic.                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PNEUMATIC SYSTEMS, COMPONENTS AND PNEUMATIC CIRCUITS                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.1: Pneumatic Systems, components                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Pneumatic Systems –elements - Compressor – Piston type and Vane                 | ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| type compressor – filter – regulator - lubricator unit – mufflers. Pneumatic    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| actuator – Single acting cylinder – Double acting cylinder – Air motors –       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Vane type and piston type. Pneumatic valves – Directional control valves        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| - 2/2, 3/2, 4/2, 4/3 & 5/2 - Control methods - Pressure relief valves -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Check Valve - Flow control Valve - shuttle valve - Twin pressure valve -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Quick exhaust valve - Time delay valve.                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.2: Pneumatic circuits                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ISO Symbol Pneumatic components - Controlling of single acting and              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Double acting cylinder - Speed control circuit, Quick exhaust valve             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| circuit, Two step feed control circuit, Time delay circuit, Automatic           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| cylinder reciprocating circuit, Deceleration air cushion of cylinder circuit -  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| two hand safety control circuit.                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                 | <ul> <li>4.2: Hydro-pneumatic</li> <li>Types – Air-oil reservoir, Air-oil cylinder, air-oil intensifier –Comparison of pneumatic, hydraulic and hydro-pneumatic.</li> <li>PNEUMATIC SYSTEMS, COMPONENTS AND PNEUMATIC CIRCUITS</li> <li>5.1: Pneumatic Systems, components</li> <li>Pneumatic Systems –elements - Compressor – Piston type and Vane type compressor – filter – regulator - lubricator unit – mufflers. Pneumatic actuator – Single acting cylinder – Double acting cylinder – Air motors – Vane type and piston type. Pneumatic valves – Directional control valves - 2/2, 3/2, 4/2, 4/3 &amp; 5/2 - Control methods - Pressure relief valves - Check Valve - Flow control Valve - shuttle valve – Twin pressure valve - Quick exhaust valve - Time delay valve.</li> <li>5.2: Pneumatic circuits</li> <li>ISO Symbol Pneumatic components - Controlling of single acting and Double acting cylinder - Speed control circuit, Quick exhaust valve circuit, Two step feed control circuit, Time delay circuit, Automatic cylinder reciprocating circuit, Deceleration air cushion of cylinder circuit -</li> </ul> |

#### **Reference Books**

- 1. A Text Book of Hydraulics, Fluid Mechanics and Hydraulic Machines, R.S. Khurmi, S.Chand& Co.
- 2. A Text Book of Hydraulics, Fluid Mechanics and Hydraulic Machines, Dr.R.K.Bansal Laxmi Publication Pvt., Ltd.
- 3. Hydraulic Machines, Jagadishlal, Metropolitan Book Co. Pvt. Ltd.
- 4. Fluid Power, Anthony Esposito, Pearson Education.
- 5. Pneumatic System Principles and Maintenance, S.R.Majumdar, McGraw Hill Education.

- 6. Oil Hydraulic System Principles and Maintenance, S.R.Majumdar, McGraw Hill Education.
- 7. Fundamentals of pneumatic control Engineering -FESTO Manual

#### Reference Web Link / Video

| Topic                              | Website            | Link                                                                                        |
|------------------------------------|--------------------|---------------------------------------------------------------------------------------------|
| Fluid Mechanics                    | NPTEL              | https://nptel.ac.in/courses/112/104/112104118/                                              |
| Fluid Mechanics and<br>Fluid Power | Dote E-<br>Lecture | https://www.youtube.com/watch?v=xmkh7M9R<br>7nM&list=PL1b9Ht9ISqIHpYlanUmZMrVUnF_C<br>ABwRk |
| Oil Hydraulics and Pneumatics      | NPTEL              | https://nptel.ac.in/courses/112/106/112106300/                                              |

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021350

Semester : III

Subject Title : Material Testing and Fluid Mechanics & Pneumatics Practical

#### **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject                          | Instr           | uctions  | Examination            |                       |       |          |
|----------------------------------|-----------------|----------|------------------------|-----------------------|-------|----------|
| 4021350                          | Hours / Hours / |          | Marks                  |                       |       |          |
| Material Testing and Fluid       | Week            | Semester | Internal<br>Assessment | Board<br>Examinations | Total | Duration |
| Mechanics & Pneumatics Practical | 4               | 64       | 25                     | 100*                  | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

#### **RATIONALE:**

This subject deals with the testing and behavior of metals at various testing condition and to create better understanding of the behavior of fluids under the condition of rest and motion. This subject deals with hydraulic and pneumatic operation.

#### **OBJECTIVES:**

At the end of the course, the students will be able to,

- Acquire skills on different types of testing methods of metals.
- Conduct material testing on elasticity, hardness, shear strength
- Determine modulus of rigidity of open spring coil springs.
- Determine the co-efficient of discharge of venturimeter.
- Determine the co-efficient of friction in pipes.
- Design and operate pneumatic circuit and hydraulic circuit.

# 4021350 MATERIAL TESTING AND FLUID MECHANICS & PNEUMATICS PRACTICAL <u>DETAILED SYLLABUS</u>

#### **Experiments**

#### PART A

- Tension test on Ductile Materials- Finding Young's Modulus of Elasticity, Yield Points, Percentage Elongation and Percentage Reduction in Area, Stress Strain Diagram Plotting test on Mild Steel with the help of a Universal Testing machine.
- Torsion test Torsion test on mild steel relation between torque and angle of twist determination of shear modulus and shear stress. Draw a graph between torque and angle of twist in radians.
- Test on spring Compression Tests on open coil spring Determination of modulus of rigidity, strain energy, shear stress and stiffness by load deflection method. Draw a graph between load and deflection
- 4. Test on orifice Determination of co-efficient of discharge of a orifice by variable head method and a graph between  $\sqrt{H_1} \sqrt{H_2}$  Vs time taken (t).
- 5. Test on venturimeter Determination of co-efficient of discharge of the venturimeter and draw the following graphs between (i) head Loss (h<sub>f</sub>) Vs Actual discharge (Q<sub>a</sub>) and (ii) head loss (h<sub>f</sub>) Vs co-efficient of discharge (C<sub>d</sub>)
- 6. Test on pipe friction apparatus Determine the friction factor of the given pipe and draw a graph between friction head  $(h_f)$  and Velocity (v).

#### PART B

#### Pneumatics Lab.

- Direct operation of pilot control of single acting cylinder and double acting cylinder.
- 2. Speed control of double acting cylinder using metering-in and metering-out circuits.
- 3. Automatic operation of double acting cylinder in single cycle using limit switch.

#### Hydraulics Lab.

- 4. Direct operation of double acting cylinder
- 5. Direct operation of hydraulic motor.
- 6. Speed control of double acting cylinder metering-in and metering-out control.

#### **BOARD EXAMINATION**

#### Note:

- All the exercises / experiments in both sections should be completed. Two exercises / experiments will be given for examination by selecting one from PART A and one from PART B.
- All the exercises / experiments should be given in the question paper and students are allowed to select by lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery / equipment before commencement of the board practical examination.

#### **DETAILLED ALLOCATION OF MARKS**

| SI. No. | Description                | Max. Marks |  |  |  |
|---------|----------------------------|------------|--|--|--|
|         | Part- A                    | l          |  |  |  |
| 1       | Observation                | 10         |  |  |  |
| 2       | Tabulation and Calculation | 40         |  |  |  |
| 3       | Result and Graph           | 5          |  |  |  |
|         | Part- B                    |            |  |  |  |
| 4       | Circuit                    | 10         |  |  |  |
| 5       | Connection as per circuit  | 20         |  |  |  |
| 6       | Execution of circuit       | 5          |  |  |  |
| 7       | Viva-voce                  | 10         |  |  |  |
|         | Total                      |            |  |  |  |

## LIST OF EQUIPMENT / TOOLS / MACHINERY REQUIRED

### (for a batch of 30 students)

| SI. No. | Machinery's / Equipment / Tools                      | Quantity   |
|---------|------------------------------------------------------|------------|
| 1.      | Universal Testing Machine (UTM)                      | 01         |
| 2.      | Torsion testing machine                              | 01         |
| 3.      | Spring testing machine                               | 01         |
| 4.      | Pipe friction Apparatus                              | 01         |
| 5.      | Venturimeter Apparatus                               | 01         |
| 6.      | Orifice testing kit setup                            | 01         |
| 7.      | Pneumatics Trainer Kit with all standard accessories | 02         |
| 8.      | Hydraulics Trainer Kit with all standard accessories | 02         |
| 9.      | Measuring instruments                                | Sufficient |
|         |                                                      | quantity   |
| 10.     | Consumables                                          | Sufficient |
|         |                                                      | quantity   |

#### Reference Web Link / Video

| Topic                            | Website      | Link                                                                                                   |  |  |
|----------------------------------|--------------|--------------------------------------------------------------------------------------------------------|--|--|
| Strength of Materials  Practical | Virtual Labs | https://sm-nitk.vlabs.ac.in/                                                                           |  |  |
| Fluid Mechanics Practical        | Virtual Labs | https://fm-nitk.vlabs.ac.in/                                                                           |  |  |
| Fluid Mechanics Practical        | Virtual Labs | https://fmc-nitk.vlabs.ac.in/                                                                          |  |  |
| Pneumatic<br>Components          | Virtual Labs | http://vlabs.iitb.ac.in/vlabs- dev/vlab_bootcamp/bootcamp/COEP_KNO WLEDGE_SEEKERS/labs/exp1/index.html |  |  |

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU **DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS**

#### **N-SCHEME**

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code: 4021360

Semester : 111

Subject Title : Production Technology Practical

#### TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

| Subject    | Instructions    |          | pject Instructions Examination |              |       |          |
|------------|-----------------|----------|--------------------------------|--------------|-------|----------|
| 4021360    | Hours / Hours / |          | Marks                          |              |       |          |
| Production | Week            | Semester | Internal                       | Board        | Total | Duration |
| Technology | lioon           | Comocion | Assessment                     | Examinations | Total |          |
| Practical  | 4               | 64       | 25                             | 100*         | 100   | 3 Hrs.   |

Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

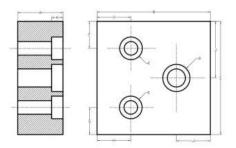
#### **RATIONALE:**

In the process of manufacturing we should possess adequate and through knowledge about the working of metal forming as well as metal cutting processes. The topics included aim to inculcate the skills of metal cutting, milling, grinding, and other machining processes which are very much essential for a technician. This will provide the students an opportunity to skill themselves for the industrial scenario.

#### **OBJECTIVES:**

Students must be able to:

- Identify the tools used in foundry.
- Identify the tools and equipment used in welding
- Prepare sand moulds for different patterns.
- Perform welding operation to make different types of joints.
- Identify the parts of drilling machine.
- Perform the various drilling operations.


- Identify the parts of a lathe.
- Operate the lathe and machine a component using lathe.
- Study the working of various machine tools: Shaper.
- Study various types of milling operations.
- Perform the milling procedure for spur gear
- Study the different types of grinders and grinding wheels.

## 4021360 PRODUCTION TECHNOLOGY PRACTICAL <u>DETAILED SYLLABUS</u>

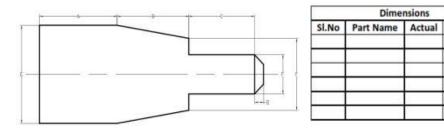
#### **EXERCISES**

#### **PART-A**

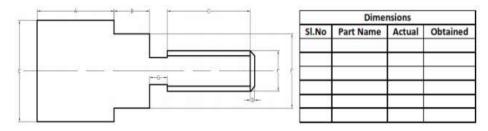
- 1. Prepare the green sand moulding using any one Solid Pattern in the foundry.
- 2. Prepare the green sand moulding using any one Split Pattern in the foundry.
- Prepare the specimen and make the T-joint by the Arc Welding (Both sidewelded).
   (Raw material 25mmX6mm MS flat)
- 4. Prepare the specimen and make the Butt joint by the Gas Welding. (Raw material 25mmX3mm MS sheet)
- 5. Prepare the specimen and make the drilling and counter boring as shown in figure using the upright drilling machine / Radial drilling machine.



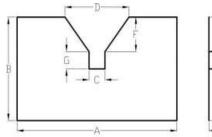
| Dimensions |           |        |          |  |  |
|------------|-----------|--------|----------|--|--|
| SI.No      | Part Name | Actual | Obtained |  |  |
|            |           |        |          |  |  |
|            |           |        |          |  |  |
|            |           |        |          |  |  |
|            |           |        |          |  |  |


6. Prepare the specimen and make the plain surfaces as shown in figure using the surface Grinder.




| Sl.No | Part Name | Actual | Obtained |
|-------|-----------|--------|----------|
| -     |           |        |          |
|       |           |        |          |
| 27    |           |        |          |
|       |           |        |          |
|       |           |        | ci.      |

#### **Exercise**

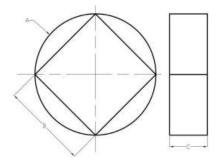

1. Prepare the specimen and make the Step Turning & Taper Turning as shown in figure using the Lathe.



2. Prepare the specimen and make the Step Turing & Thread cutting as shown in figure using the Lathe.

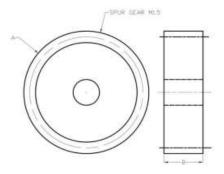


3. Prepare the specimen and make 'V' Block as shown in figure using Shaping machine



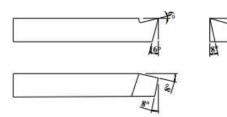


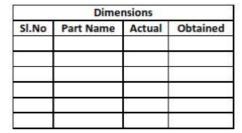

| Dimensions |           |        |          |  |  |
|------------|-----------|--------|----------|--|--|
| Sl.No      | Part Name | Actual | Obtained |  |  |
| -          |           |        |          |  |  |
|            |           |        |          |  |  |
| -          |           |        |          |  |  |
|            |           |        |          |  |  |


Obtained

4. Prepare the specimen and make round to square as shown in figure using milling machine




| Dimensions |           |        |          |  |  |
|------------|-----------|--------|----------|--|--|
| Sl.No      | Part Name | Actual | Obtained |  |  |
|            |           |        |          |  |  |
|            |           |        |          |  |  |
|            |           |        |          |  |  |
|            |           |        |          |  |  |


5. Prepare the specimen and make Spur Gear as shown in figure using milling machine by indexing method.



| Dimensions |           |        |          |  |  |
|------------|-----------|--------|----------|--|--|
| Sl.No      | Part Name | Actual | Obtained |  |  |
|            |           |        |          |  |  |
|            |           |        |          |  |  |
|            |           |        | ļ        |  |  |
|            |           |        |          |  |  |

6. Prepare the specimen and make the turning tool as shown in figure using the Tool and Cutter Grinder.





#### **BOARD EXAMINATION**

#### Note:

- All the exercises/experiments in both sections should be completed. Two
  exercises/experiments will be given for examination by selecting one from PART A
  and one from PART B.
- All the exercises/experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machineries / equipments before commencement of the board practical examination.

### **DETAILLED ALLOCATION OF MARKS**

| SI. No. | Description             | Max. Marks |  |  |  |
|---------|-------------------------|------------|--|--|--|
|         | Part- A                 |            |  |  |  |
| 1       | Procedure / Preparation | 10         |  |  |  |
| 2       | Machining / Dimensions  | 25         |  |  |  |
| 3       | Finishing               | 5          |  |  |  |
|         | Part- B                 |            |  |  |  |
| 4       | Procedure / Preparation | 10         |  |  |  |
| 5       | Machining / Dimensions  | 35         |  |  |  |
| 6       | Finishing               | 5          |  |  |  |
| 7       | Viva-voce               | 10         |  |  |  |
|         | Total                   | 100        |  |  |  |

# LIST OF EQUIPMENT / TOOLS / MACHINE REQUIRED (for a batch of 30 students)

| SI. No. | Machines /Tools/ Equipments | Quantity    |
|---------|-----------------------------|-------------|
| 1       | Moulding board              | 5 Nos.      |
| 2       | Cope box                    | 5 Nos.      |
| 3       | Drag box                    | 5 Nos.      |
| 4       | Core box                    | 5 Nos.      |
| 5       | Shovel                      | 2 Nos.      |
| 6       | Rammer set                  | 5 Nos.      |
| 7       | Slick                       | 5 Nos.      |
| 8       | Strike-off bar              | 5 Nos.      |
| 9       | Riddle                      | 2 Nos.      |
| 10      | Trowel                      | 5Nos.       |
| 11      | Lifter                      | 5 Nos.      |
| 12      | Cleaning Brush              | 5 Nos.      |
| 13      | Vent rod                    | 5 Nos.      |
| 14      | Draw spike                  | 5 Nos.      |
| 15      | Gate cutter                 | 5 Nos.      |
| 16      | Runner & riser              | 5 Nos. each |
| 17      | Arc welding transformer     | 1 No        |
| 18      | Gas welding unit            | 1 Set       |
| 19      | Welding shield              | 5 Nos.      |

| 20 | Gas welding goggles                                | 5 Nos.              |
|----|----------------------------------------------------|---------------------|
| 21 | Chipping hammer                                    | 10 Nos.             |
| 22 | Leather Glows 18"                                  | 10 Sets.            |
| 23 | Upright drilling machine / Radial drilling machine | 1 No.               |
| 24 | Vernier Height Gauge                               | 1 No.               |
| 25 | Surface plate                                      | 1 No.               |
| 26 | Lathe                                              | 4 Nos.              |
| 27 | Vertical milling machine                           | 1 No.               |
| 28 | Universal Milling Machine                          | 1 No.               |
| 29 | Surface Grinding Machine                           | 1 No.               |
| 30 | Tool and Cutter Grinder                            | 1 No.               |
| 31 | Shaping Machine                                    | 1 No.               |
| 32 | Tools and Measuring instruments                    | Sufficient quantity |
| 33 | Personal protective equipment                      | Sufficient          |
|    |                                                    | quantity            |
| 34 | Fire safety equipment                              | Sufficient          |
|    |                                                    | quantity            |
| 35 | Consumable                                         | Sufficient          |
|    |                                                    | quantity            |

#### **Reference Book**

- 1. Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- 2. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGraw Hill House, 2017

#### Reference Web Link / Video

| Topic                   | Website     | Link                                                          |  |  |
|-------------------------|-------------|---------------------------------------------------------------|--|--|
| Manufacturing Processes | Virtual Lab | http://vlabs.iitkgp.ac.in/psac/newlabs20<br>20/vlabiitkgpAM/# |  |  |

#### STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU

#### **DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS**

#### N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4020370

Semester : III

Subject Title : Measurements and Metrology Practical

#### TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

| Subject                    | Instructions |          | Examination            |                       |       |          |
|----------------------------|--------------|----------|------------------------|-----------------------|-------|----------|
| 4020370                    | Hours        | Hours /  | Marks                  |                       |       |          |
| Measurements and Metrology | / Week       | Semester | Internal<br>Assessment | Board<br>Examinations | Total | Duration |
| Practical                  | 4            | 64       | 25                     | 100*                  | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

#### **OBJECTIVES:**

- Familiarize about measuring techniques of Metrology instruments.
- Select the range of measuring tools. Study of accuracy of instruments and calibration of instruments.
- Obtain accurate measurements.
- Determine the least count of measuring instruments.
- Acquire knowledge about linear measurement.
- Acquire knowledge about angular measurement.
- Acquire knowledge about geometric measurements.
- Study of Linear Measuring Instruments: Vernier Caliper, Micrometer, Inside Micrometer, Vernier Height gauge and Slip Gauge.
- Study of Angular Measuring Instruments—Universal Bevel Protractor, Sine Bar.
- Study of Geometric measurement Gear tooth Vernier, Thread Vernier.

#### **Exercises**

#### PART A:

- 1. Measure the dimensions of ground MS flat / cylindrical bush using VernierCaliper compare with Digital / Dial Vernier Caliper.
- 2. Measure the diameter of a wire using micrometer and compare the result with digital micrometer
- 3. Measure the thickness of ground MS plates using slip gauges
- 4. Measure the inside diameter of the bore of a bush cylindrical component using inside micrometer compare the result with digital micro meter.
- 5. Measure the height of gauge blocks or parallel bars using vernier height gauge.
- Detect of cracks of the given two specimens using liquid penetrant test and magnetic particle test.

#### PART B:

- Measure the angle of a V-block / Taper Shank of Drill / Dovetail using universal bevel protractor.
- 2. Measure the angle of the machined surface using sine bar with slip gauges.
- 3. Measure the geometrical dimensions of V-Thread using thread micrometer.
- 4. Measure the geometrical dimensions of spur gear.
- 5. Find out the measurement of given component and compare with a standard component using mechanical comparator and slip gauge .
- 6. Prepare a specimen to examine and find the grain structure using the Metallurgical Microscope.

#### **BOARD EXAMINATION**

#### Note:

- All the exercises in both sections have to be completed. Two exercises will be given for examination by selecting one exercise from PART A and one exercise from PART B.
- All the exercises should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

#### **DETAILED ALLOCATION OF MARKS**

| Part-A                   | :  | 45 marks |
|--------------------------|----|----------|
| Procedure / Preparation  | 10 |          |
| Observation / Dimensions | 25 |          |
| Finishing                | 10 |          |
| Part-B                   | :  | 45 marks |
| Procedure / Preparation  | 10 |          |
| Observation / Dimensions | 25 |          |
| Finishing                | 10 |          |
| Viva-voce                | :  | 10 marks |
| Total                    | :  | 100Marks |

#### LIST OF EQUIPMENTS (For 30 students)

- 1. Vernier Caliper 2 Nos.
- 2. Digital / Dial Vernier Caliper. 2 Nos.
- 3. Outside micrometer 2 Nos.
- 4. Inside Micrometer 2 Nos
- 5. Digital Micrometer 2 Nos.
- 6. Slip gauges 2 Nos.
- 7. Universal bevel protractor. 2 Nos.
- 8. Sine bar 2 Nos.
- 9. Digital inside micrometer 2 Nos.
- 10. Surface plate 2 Nos.
- 11. Vernier height gauge 1No.
- 12. Thread Vernier 1 No.
- 13. Thread micrometer 1 No.
- 14. Gear tooth Vernier 2 Nos.
- 15. Mechanical comparator 2 Nos.
- 16. Dial indicator (0-10) 2 Nos.
- 17. Abrasive grinder 1 No.
- 18. Polishing Machine 1 No.
- 19. Mounting machine 1 No.
- 20. Metallurgical microscope 2 Nos
- 21. Magnetic yoke 1 No.
- 22. Liquid penetrant test kit 1 set.
- 23. Consumable Sufficient quantity

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021410

Semester : IV

Subject Title : Heat Power Engineering

#### **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject                   | Instructions |          |            | Examination  | 1     |          |
|---------------------------|--------------|----------|------------|--------------|-------|----------|
| Hours                     | Hours /      | Hours /  | Marks      |              |       |          |
| 4021410                   | Week         | Semester | Internal   | Board        | Total | Duration |
| Heat Power<br>Engineering |              |          | Assessment | Examinations |       |          |
|                           | 5            | 80       | 25         | 100*         | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

### **Topics and Allocation of Hours**

| UNIT | TOPIC                                           | TIME |
|------|-------------------------------------------------|------|
| I    | Steam Generators and Steam Boiler               | 15   |
| II   | Steam Engine, Steam Turbine and Steam Condenser | 15   |
| III  | Air Compressors Gas Turbines and Jet Propulsion | 15   |
| IV   | Refrigeration and Air-Conditioning              | 14   |
| V    | Thermal Power Plant and Nuclear Power Plant     | 14   |
|      | Test & Revision                                 | 7    |
|      | Total                                           | 80   |

#### RATIONALE:

This subject is one of the core subjects. Diploma engineers have to work with various power producing and power absorbing devices. This subject will enable students to establish foundation required to design, operate and maintain the devices. This subject emphasizes on steam boilers and allied components that are used in industrial sectors. Thermal power plants are still contributing major share in electricity production in India. The students will be able to calculate various parameters required to determine the performance of these devices.

#### **OBJECTIVES**

- Explain the concepts and applications of steam
- Learn the construction and working of steam boilers, steam engines, steam turbines and steam condensers.
- Explain the concepts and applications of air compressor, gas turbines and jet propulsion
- Explain the concepts and applications of Refrigeration and Air-conditioning.
- Explain the concepts and applications of thermal and nuclear power plants.

# 4021410 HEAT POWER ENGINEERING <u>DETAILED SYLLABUS</u>

Contents: Theory

| Unit | Name of the Topics                                                                     | Hours |
|------|----------------------------------------------------------------------------------------|-------|
| ı    | STEAM GENERATORS AND STEAM BOILER                                                      |       |
|      | 1.1: Steam Generators                                                                  |       |
|      | Properties of steam - Formation of steam - dryness fraction - wetness                  | 5     |
|      | fraction - types of steam - dry steam, wet steam and superheated                       |       |
|      | steam - compare - advantages of superheated steam - enthalpy -                         |       |
|      | entropy – specific volume – simple problems.                                           |       |
|      | 1.2: Steam Boiler                                                                      |       |
|      | Introduction - Classifications - Essentials of good steam boiler -                     | 7     |
|      | selection of a steam boiler - Compare water tube boiler and fire tube                  |       |
|      | boiler – Working principle of BHEL boiler. Boiler act. Boiler Mountings:               |       |
|      | water level indicator - stop valve - feed check valve - blow of cock.                  |       |
|      | Steam safety valves: Spring loaded safety vale – High steam and Low                    |       |
|      | water safety valve. Boiler accessories: feed pump - injector -                         |       |
|      | economizer – air preheater – super heater – steam separator.                           |       |
|      | Performance of boilers: Evaporative capacity – Equivalent evaporation                  |       |
|      | <ul> <li>Factor of evaporation – Boiler efficiency – Heat losses in a power</li> </ul> | 3     |
|      | plant – simple problems.                                                               |       |
| II   | STEAM ENGINE, STEAM TURBINE AND STEAM CONDENSER                                        |       |
|      | 2.1: Steam Engine                                                                      |       |
|      | Introduction - Classification - Reciprocating steam engine parts and                   | 7     |
|      | their description - working principle - theoretical indicator diagram -                |       |
|      | actual indicator diagram – mean effective pressure – Indicated power –                 |       |
|      | brake power. Efficiency: mechanical, relative and overall. Description                 |       |
|      | only.                                                                                  |       |
|      | 2.2: Steam Turbine                                                                     | 3     |
|      | Introduction – classification – advantages – types – compounding:                      |       |
|      | velocity, pressure and pressure velocity. Bleeding - energy losses -                   |       |
|      | Description only.                                                                      |       |
|      |                                                                                        |       |

|     | 2.3: Steam Condenser                                                        | 5 |
|-----|-----------------------------------------------------------------------------|---|
|     | Introduction – classification – Jet condenser: Principles of parallel flow, |   |
|     | counter flow and ejector. Surface condenser: Principles of down flow,       |   |
|     | central flow and evaporative. Compare jet condenser and surface             |   |
|     | condenser.                                                                  |   |
| III | AIR COMPRESSORS AND GAS TURBINES                                            |   |
|     | 3.1: Air compressors                                                        | 8 |
|     | Introduction – classification – working of single stage reciprocating air   |   |
|     | compressor – p-V and T-s diagram – isothermal efficiency, work done:        |   |
|     | without and with clearance volume – volumetric efficiency – simple          |   |
|     | problems. Principles of multi-stage reciprocating compressor. Rotary        |   |
|     | compressor: construction and working of roots blower – vane type            |   |
|     | blower – centrifugal compressor - axial flow compressor. Compressed         |   |
|     | air motors: principles of reciprocating type and rotary type air motor.     |   |
|     | 3.2: Gas Turbines                                                           |   |
|     | Introduction – classifications – advantages and disadvantages of gas        | 4 |
|     | turbines – constant pressure gas turbine - gas turbine with regenerator     |   |
|     | - intercooler - reheater - effects - closed cycle gas turbines -merits      |   |
|     | and demerits of open and closed cycle gas turbine.                          |   |
|     | 3.3: Jet Propulsion                                                         |   |
|     | Turbo jet engines – merits and demerits – turbo propeller engines –         | 3 |
|     | merits and demerits – ramjet - comparison of aircraft and industrial gas    |   |
|     | turbines.                                                                   |   |
| IV  | REFRIGERATION AND AIR-CONDITIONING                                          |   |
|     | 4.1: Refrigeration                                                          |   |
|     | Refrigeration - refrigerators and heat pumps - types and applications of    | 7 |
|     | refrigeration – vapour compression refrigeration system – vapour            |   |
|     | absorption system – comparison – refrigerating effect – capacity of         |   |
|     | refrigerating unit - C.O.P – actual C.O.P – power required – mass of ice    |   |
|     | produced – problems. Refrigerants – desirable properties -                  |   |
|     | classification of refrigerants.                                             |   |
|     | 4.2: Air-Conditioning                                                       | 7 |
|     | Introduction - psychrometric properties - dry air - moist air - water       |   |

vapour - saturated air - dry bulb temperature - wet bulb depression dew point depression - dew point temperature - humidity - specific and relative humidity. Psychrometric chart – psychometric processes sensible heating and cooling - humidification - dehumidification. Applications of air conditioning system – room air conditioning – central air conditioning - differences between comfort and industrial air conditioning. Factors to be considered in air conditioning - loads encountered in air-conditioning systems. V THERMAL POWER PLANT AND NUCLEAR POWER PLANT 6 **5.1: Thermal Power Plant** Layout of thermal power plant – merits and demerits of thermal power plant - pollutants - effects and control - cyclone separator - wet scrubber – electrostatic precipitator – control of NO<sub>2</sub> and SO<sub>2</sub> - fluidised bed combustion. 8 5.2: Nuclear Power Plant Nuclear fission and fusion - chain reaction - radioactivity - layout of nuclear power plant - merits and demerits - Nuclear reactors classification - components of nuclear reactor - reactor core moderators - control rods - coolant - reflectors - biological shield pressurized water reactor – boiling water reactor – Candu type reactor fast breeder reactor – effect of nuclear radiation – disposal of nuclear wastes - comparison of nuclear power plants with thermal power plants.

#### **Reference Book**

- 1. Applied Thermodynamics, P.K. Nag, TATA McGraw- Hill Publishing Co.
- 2. Thermal Engineering, R.S. Khurmi and J.K. Gupta, 18th Edition, Chand & Co.
- 3. Thermal Engineering, P.L Ballaney, Khanna Publishers.
- 4. Thermal Engineering, Er.R.K.Rajput, Lakshmi Publications (P) Ltd.
- 5. Applied Thermodynamics, Domkundwar and C.P Kothandaraman, Khanna publishers.
- 6. Refrigeration and Air conditioning, P. L. Ballaney, Khanna Publishers.

- 7. Power Plant Engineering Thermodynamics, Domkundwar and C.P.Kothandaraman, Khanna Publishers.
- 8. Power Plant Engineering, G.R. Nagpal, KhannaPublishers.

## Reference Web Link / Video

| Topic                                | Website        | Link                                                                                    |
|--------------------------------------|----------------|-----------------------------------------------------------------------------------------|
| Thermal and Automobile Engineering   | Dote E-Lecture | https://www.youtube.com/watch?v=85K4_4PfRpQ<br>&list=PL1b9Ht9ISqIG_szHgF6Fie9fdDpf8WOE0 |
| Heat Power<br>Engineering            | Dote E-Lecture | https://www.youtube.com/watch?v=NpII017XBMI&list=PL1b9Ht9ISqIGJgqTGxcqmSEwLa_WWI83e     |
| Basic<br>Thermodynamics              | NPTEL          | https://nptel.ac.in/courses/112/105/112105123/                                          |
| Applied Thermodynamics for engineers | NPTEL          | https://nptel.ac.in/courses/112/103/112103275/                                          |
| Power Plant<br>Engineering           | NPTEL          | https://nptel.ac.in/courses/112/107/112107291/                                          |
| Refrigeration and air Conditioning   | NPTEL          | https://nptel.ac.in/courses/112/105/112105129/                                          |

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021420

Semester : IV

Subject Title : Vehicle Body Engineering

#### **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject Instructions        |         | Examination |            |              |       |          |
|-----------------------------|---------|-------------|------------|--------------|-------|----------|
| Нс                          | Hours / | Hours /     |            | Marks        |       |          |
| 4021420                     | Week    | Semester    | Internal   | Board        | Total | Duration |
| Vehicle Body<br>Engineering |         |             | Assessment | Examinations | 10141 |          |
| Engineering                 | 5       | 80          | 25         | 100*         | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

### **Topics and Allocation of Hours**

| UNIT | TOPIC                                        | TIME |
|------|----------------------------------------------|------|
| I    | Automotive Aerodynamics                      | 15   |
| II   | Car Bodies                                   | 15   |
| III  | Bus Bodies                                   | 15   |
| IV   | Commercial Vehicle Bodies and Body Materials | 14   |
| V    | Vehicle Body Repair Works and Painting       | 14   |
|      | Test & Revision                              | 7    |
|      | Total                                        | 80   |

#### **RATIONALE:**

To impart knowledge to the students about constructional details of different types of vehicle bodies and about vehicle body repair works and painting.

#### **OBJECTIVES:**

- To impart knowledge in automotive aerodynamics.
- To understand the construction of car body, design criteria, types of car and safety aspects of car.
- To understand the construction of bus body and dimensions of bus body and safety aspects.
- To understand the types of commercial vehicles; design of cab and in aerodynamic testing, forces and moments.
- To understand the vehicle body repair works and painting.

# 4021420 VEHICLE BODY ENGINEERING <u>DETAILED SYLLABUS</u>

Contents: Theory

| Unit | Name of the Topics                                                         | Hours |
|------|----------------------------------------------------------------------------|-------|
| ı    | Automotive Aerodynamics                                                    |       |
|      | Objectives, Vehicle Drag - Definition, Types and Effects. Forces and       | 8     |
|      | Moments Acting on Vehicle Body - Types and Effects. Various Body           |       |
|      | Optimization Techniques and Aerodynamic Aids for Optimization of Drag.     |       |
|      | Drag Reducing Devices in Commercial Vehicles.                              |       |
|      | Wind Tunnel Testing – Concept and Types, Flow Visualization                | 7     |
|      | Techniques, Scale Model Testing, Component Balance to Measure              |       |
|      | Forces and Moments.                                                        |       |
| II   | Car Bodies                                                                 |       |
|      | Car Body-Purpose, Requirements and Types - Saloon, Convertibles,           | 8     |
|      | Limousine, Estate Van, Racing and Sports Car. Car Body Construction -      |       |
|      | Components of Car Body and Purpose of Each Component. Safety               |       |
|      | Equipments for Car - Seat Belts and Air Bags.                              |       |
|      | Dimensional and Visibility Regulations. Drivers Visibility, Tests for      | 7     |
|      | Visibility, Methods for Improving Visibility and Space in Cars. Crash Test |       |
|      | and Roll Over Test.                                                        |       |
| III  | Bus Bodies                                                                 |       |
|      | Bus Body – Types - Mini Bus, Single Decker, Double Decker, Two Level,      |       |
|      | Split Level and Articulated Bus. Bus Body Layout - Floor Height - Engine   | 11    |
|      | Location - Entrance and Exit Location - Seating Dimensions.                |       |
|      | Constructional Details - Frame Construction - Types of Metal Section       |       |
|      | Used, Double Skin Construction, Conventional and Integral Type             |       |
|      | Construction.                                                              |       |
|      | Automatic Door System – Twin Glider Door, Single Glider Door, Folding      | 4     |
|      | Door, Sliding Plug Door and Swing Plug Door.                               |       |
| IV   | Commercial Vehicle Bodies and Body Materials                               | _     |
|      | Types of Commercial Vehicle Body - Light Commercial Vehicle Body           | 9     |
|      | Types, Flat Platform, Drop Side, Fixed Side, Tipper Body, Tanker Body -    |       |
|      | Baffled and Un-Baffled Tanks, Drivers Cab Design - Forward Control Cab     |       |

|   | and Normal Control Cab.                                                     |   |
|---|-----------------------------------------------------------------------------|---|
|   | Vehicle Body Materials - Steel, Light Alloys, Plastics, Crp, Grp, Textiles, | 5 |
|   | Glass, Wood, Aluminium Materials, Adhesives and their Properties.           |   |
| V | Vehicle Body Repair Works and Painting                                      |   |
|   | Hand Tool, Power Tool and Equipments for Body Repair Works. Body            | 6 |
|   | Repair Methods - Paintless Dent Removal, Body Filler, Hammer & Dolly        |   |
|   | Method and Patching.                                                        |   |
|   | Refinishing Process - Paint Removal, Preparing Bare Metal, Prime Coat       |   |
|   | Selection, Final Sanding, Masking, Surface Cleaning. Painting -             | 8 |
|   | Objectives, Elements of Paint. Painting Methods – Spray Painting and        |   |
|   | Immersion Painting. Vacuum Coating, Electrostatic Painting. New             |   |
|   | Vehicle Painting Process.                                                   |   |

#### **Reference Books**

- 1. Vehicle Body Engineering, Powloski, J., Business Books Ltd, 1989.
- 2. Body Repair Technology for 4-Wheelers, James E Duffy, Cengage Learning.
- 3. Body construction and design, Giles, G.J., Illiffe Books Butterworth & Co.
- 4. The Repair of vehicle bodies, Andrew Livesey and A Robinson, Routledge.
- 5. John Fenton, "Handbook of Automotive Body and Systems Design", John Wiley & Sons, 2013.

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021430

Semester : IV

Subject Title : Automobile Electrical and Electronics Systems

#### **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject                | Instr   | uctions  | Examination |              |       |          |
|------------------------|---------|----------|-------------|--------------|-------|----------|
| 4021430                | Hours / | Hours /  |             | Marks        |       |          |
| Automobile             |         |          | Internal    | Board        | T-4-1 | Duration |
| Electrical and         | Week    | Semester | Assessment  | Examinations | Total |          |
| Electronics<br>Systems | 5       | 80       | 25          | 100*         | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

### **Topics and Allocation of Hours**

| UNIT | TOPIC                                                                        | TIME |
|------|------------------------------------------------------------------------------|------|
| I    | Basic Electrical and Electronic Principles                                   | 15   |
| II   | Electromagnetic Induction Machines, Starter Motors,<br>Alternators           | 15   |
| III  | Lighting and Auxiliary System                                                | 15   |
| IV   | Electronic Spark Ignition & Diesel Ignition and Engine<br>Management Systems | 14   |
| V    | Control of Automotive Systems through Electronic Management Systems          | 14   |
|      | Test & Revision                                                              | 7    |
|      | Total                                                                        | 80   |

#### **RATIONALE:**

Diploma engineers have to deal with electrical and electronics engineering principles and applications in industrial processes of different fields. It is therefore necessary for them to apply the principles of electrical and electronics engineering. This subject make them conversant with electrical and electronic engineering aspects of manufacturing, production, fabrication, automobile and mechanical based processes in industries,

#### **OBJECTIVES:**

- To learn the basics in Automotive Electrical, Electromagnetic & Electronic principles
- To know the basic symbols of Electrical & Electronic Components, Wire & Cable
   Color Codes & Sizes and using those symbols to draw simple Circuit Diagrams
- To learn all about components applying the principles of Electromagnetic & Electromagnetic Induction in an Automobile like Starting Motors, Alternators, Solenoids, Relays, Transformers, Inductors etc. & Lighting, Auxiliary & Sensors Systems in an Automotive Vehicle.
- To study about the evolution of Automotive Spark Ignition Systems and their working
- To study about Electronic Management of Automotive Systems through use of ECMs
   & Transducers.

### 4021430 AUTOMOBILE ELECTRICAL AND ELECTRONICS SYSTEMS <u>DETAILED SYLLABUS</u>

Contents: Theory

| Unit | Name of the Topics                                                                                                                       | Hours |
|------|------------------------------------------------------------------------------------------------------------------------------------------|-------|
| I    | Basic Electrical and Electronic Principles                                                                                               | 12    |
|      | Introduction - Definitions - Charge, Current, Electromotive Force,                                                                       |       |
|      | Potential Difference, Theory of Electron Flow and Conventional Flow.                                                                     |       |
|      | Properties of Conductors, Insulators and Semiconductors. Definitions of                                                                  |       |
|      | Electrical Laws - Ohm's Law, Kirchhoff's Laws, Definitions of Resistance                                                                 |       |
|      | & Resistivity, Inductance and Capacitance. Definitions of Magnetism,                                                                     |       |
|      | Electromagnetism & Electromagnetic Induction, Mutual Induction.                                                                          |       |
|      | Electromagnetic Terms & Definitions, Faraday's Laws, Fleming's Rules,                                                                    |       |
|      | Maxwell's Corkscrew Rules, Lenz's Law and their application in                                                                           |       |
|      | Automobiles. Single Pole & Double Pole Wiring, Electrical Safeties and                                                                   |       |
|      | the benefits of "Earthing To Chassis" in Automotive Wiring, Electrical                                                                   |       |
|      | Symbols, Wire Sizes & Colour Codes, their importance in an Electrical                                                                    |       |
|      | Circuits.                                                                                                                                |       |
|      | Introduction - Basic Principles of Semiconductors. Semiconductor                                                                         | 3     |
|      | Devices - LED- Seven segment LED - Zener Diodes, Transistors &                                                                           |       |
|      | SCRs. Rectifier - Half Wave Rectifier, Full Wave Rectifier, Bridge                                                                       |       |
|      | Rectifier & Applications of Semiconductor Devices in various                                                                             |       |
|      | Automotive Systems.                                                                                                                      |       |
| II   | Electromagnetic Machines, Starter Motors & Alternators                                                                                   | 3     |
|      | Solenoid Actuator, Relays and types of Relays and their automotive                                                                       |       |
|      | usage. Electromagnetic & Thermal Relays                                                                                                  | _     |
|      | Requirements of The Charging System. Charging System Principles.                                                                         | 7     |
|      | Alternators – Construction, Generation of Electricity, Rectification of AC to DC, Regulation of Output Voltage - Need for the Regulator, |       |
|      | Regulators, Charging Circuits. Advantages of Alternator over Dynamo.                                                                     |       |
|      | Trouble Shooting in the Alternator.                                                                                                      |       |
|      | Requirements of Starter Motor. Starting Motor - Working Principle -                                                                      | 5     |
|      | Construction. Starting System Circuit. Starter Drive Mechanisms -                                                                        |       |
|      | Bendix Drive Mechanism, Over Running Clutch Type Drive Mechanism                                                                         |       |
|      | and Coaxial Drive Mechanism in the Heavy Vehicles. Starter Switches                                                                      |       |
|      | and Solenoids. Stepper Motors & Servo Motors,                                                                                            |       |

| Ш  | Lighting and Auxiliary System                                             |   |
|----|---------------------------------------------------------------------------|---|
|    | Lighting – Purposes & the needs of Traffic Indicators, Sidelights, Rear   | 8 |
|    | Lights, Brake Lights, Reversing Lights, Day Running Lights, Rear Fog      |   |
|    | Lights, Front Spot, Fog Lights, Park Lamp, Rear Number Plate Lamp,        |   |
|    | Beam Indicator, Door Lamp, Pillar Lamp, Roof Lamp and Panel Lamps.        |   |
|    | Dip Switch and Lighting Circuits. Headlight Leveling, Headlight Beam      |   |
|    | Setting.                                                                  |   |
|    | Wiper and Washer Systems - Construction and Working, Electric Horns       | 7 |
|    | - Construction and Working. Window Glass Panel Operating System,          |   |
|    | Gauges - Fuel Gauge, Oil Pressure Gauge, Coiling Water Temperature        |   |
|    | Gauge and Ammeter Charging Indicator.                                     |   |
| IV | Electronic Spark Ignition & Diesel Ignition and Engine Management         |   |
|    | Systems                                                                   |   |
|    | Evolution of SI Engine Ignition Systems-from Magneto Ignition System      | 5 |
|    | to Electronic Distributer-less Ignition System, the needs for development |   |
|    | & benefits gained at each stage. Brief Study of each of the System,       |   |
|    | Spark Plug types, needs & Usage.                                          |   |
|    | Electrical Circuitry Outline of Electronic Engine Controls for MPFI &     | 6 |
|    | CRDI Systems-Difference between Electronically Managed Engines &          |   |
|    | Mechanically Managed Engines with Inherent Merits & Demerits-             |   |
|    | Description, Working & Testing of various Sensors, Engine Controller &    |   |
|    | Actuators used in MPFI & CRDI Systems, On-Board-Diagnostic                |   |
|    | Systems & Instrument Panel.                                               |   |
|    | Types of Sensors – Thermistor Sensor, Pressure Sensor, Inductive          | 3 |
|    | Sensor, Knock Sensor, Fuel Flow Sensor, Oxygen Sensor and Vehicle         |   |
|    | Speed Sensor.                                                             |   |
| V  | Control of Automotive Systems through Electronic Management               |   |
|    | Systems                                                                   |   |
|    | Electronic Control Unit - Working Principle. Sub-Units in Microprocessor  | 6 |
|    | Control Systems. Microprocessor And Microcomputer Controlled              |   |
|    | Devices In Automobiles - Travel Information System and Keyless Entry      |   |
|    | System.                                                                   |   |
|    | On-Board-Diagnostics and their functions, Identification of different     | 8 |

types of Connectors in the circuits of Microprocessor Controlled Systems – Electrical motor control system - Electrical safety standard in Vehicle – MCB, ELCB – Role Electric Vehicle Technology - Impact of Automobile Industry

#### **Reference Books**:

- 1. Automobile Electrical and Electronics Systems, Tom Denton, London.
- 2. Automotive Electrical and Electronics, Barry Holembeak, USA.
- 3. Automotive Computers and Digital Instrumentation, Robert N Brady, New Jersey.
- 4. Automotive Electronics and Electrical Equipment, William H. Crouse and DL. Anglin, McGraw Hill company.
- 5. Automobile Electrical Equipment, William. H. Crouse., McGraw Hill Book Co. Inc., New York.
- 6. Automobile Engineering, RB Gupta, Satya Prakashan, New Delhi.

## Blank Page

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021440

Semester : IV

Subject Title : Automotive Engines

#### **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject               | Instructions |           |            | Examination  | 1     |          |
|-----------------------|--------------|-----------|------------|--------------|-------|----------|
|                       | Hours /      | Hours /   |            | Marks        |       |          |
| 4021440               | Week         | Semester  | Internal   | Board        | Total | Duration |
| Automotive<br>Engines | VVCCK        | Jeniestei | Assessment | Examinations | IOtai |          |
| Liigiiioo             | 5            | 80        | 25         | 100*         | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

#### **TOPICS AND ALLOCATION OF HOURS**

| UNIT              | ТОРІС                                                                |    |  |  |
|-------------------|----------------------------------------------------------------------|----|--|--|
| I                 | Thermodynamics, Air Cycles                                           | 15 |  |  |
| II                | Fundamentals of IC Engines, Testing of IC engines:                   |    |  |  |
| III               | Fuel supply system, Fuel Injection Systems                           | 15 |  |  |
| IV                | Ignition Systems                                                     | 14 |  |  |
| V                 | V Cooling system, Lubrication System, Super charging, Turbo Charging |    |  |  |
| Test and Revision |                                                                      |    |  |  |
|                   | TOTAL                                                                | 80 |  |  |

#### **RATIONALE:**

This is the core technology subject. All automotive vehicles are powered by IC engines. Hence the fundamental knowledge of automobile engine is most essential for the auto technicians. This subject will help in understanding the procedure of inspection, diagnosis and testing of engines and other systems. This subject deals with all systems in the automobile engines.

#### **OBJECTIVES**

- Explain the basics of systems, laws of thermodynamics and thermodynamic processes.
- Learn the construction and working fundamentals of IC Engines.
- Performance of petrol and diesel engines and its components.
- Explain the concept and applications of IC engines and its performance
- Learn the working principle of fuel feed system of petrol and diesel engines.
- Explain the concept of fuel Injection system of petrol and diesel engines.
- Learn the working principle of Ignition systems.
- Acquire the knowledge on the lubrication and cooling systems of engines.

# 4021440 AUTOMOTIVE ENGINES <u>DETAILED SYLLABUS</u>

Contents: Theory

| Unit | Name of the Topics                                                       | Hours |
|------|--------------------------------------------------------------------------|-------|
| I    | THERMODYNAMICS AND AIR CYCLES                                            |       |
|      | 1.1: Thermodynamics                                                      | 7     |
|      | Definitions and units of mass, weight, volume, density, specific weight, |       |
|      | specific gravity and specific volume - pressure - units of pressure -    |       |
|      | temperature - absolute temperature - S.T.P and N.T.P conditions -        |       |
|      | heat - specific heat capacity at constant volume and at constant         |       |
|      | pressure - work - power - energy - law of conservation of energy -       |       |
|      | thermodynamic system - thermodynamic equilibrium - properties of         |       |
|      | systems – intensive and extensive properties – State of system –         |       |
|      | process – cycle – point and path functions - Zeroth, First and Second    |       |
|      | laws of thermodynamics. Description only.                                |       |
|      | 1.2: Thermodynamic Processes                                             | 3     |
|      | Constant Volume - Constant Pressure - Constant temperature -             |       |
|      | Isentropic – Polytropic - P-V and T-S diagrams. Free expansion –         |       |
|      | Throttling process. Description only.                                    |       |
|      | 1.3: Air Cycles                                                          | 5     |
|      | Carnot Cycle - Otto cycle - Diesel Cycle - Dual cycle - Efficiency -     |       |
|      | Brayton cycle - Stirling cycle. Description only.                        |       |
| IJ   | FUNDAMENTALS OF IC ENGINES AND TESTING OF IC ENGINES                     |       |
|      | 2.1: Fundamentals of IC Engines                                          |       |
|      | Introduction – Development of IC engines – Classification – IC Engine    | 6     |
|      | and Its Components – Working of Four Stroke Cycle Petrol Engine –        |       |
|      | Working of Four Stroke Cycle Diesel Engine – Valve timing diagram -      |       |
|      | Working of Two stroke petrol engines – Working of Two stroke diesel      |       |
|      | engines – Port timing diagram - Applications of IC engines.              |       |
|      | 2.2: Testing of IC engines                                               |       |
|      | Performance of IC Engines - Thermodynamic and commercial tests -         | 9     |
|      | indicated power – brake power – friction power – efficiencies of I.C.    |       |
|      | engines - indicated thermal, brake thermal, mechanical and relative      |       |

|     | efficiencies – Specific fuel consumption – Morse test – procedure – heat  |   |
|-----|---------------------------------------------------------------------------|---|
|     | balance sheet – simple problems.                                          |   |
| III | FUEL SUPPLY SYSTEM AND FUEL INJECTION SYSTEMS                             |   |
|     | 3.1: Fuel supply System                                                   | 5 |
|     | SI Engines fuel supply system - General arrangement - Construction        |   |
|     | and working principle of Mechanical fuel pump, Electrical fuel pump. Air- |   |
|     | Fuel mixtures and its requirement – Working principle of Simple           |   |
|     | carburetor – Working principle of Solex carburetor, SU carburetor.        |   |
|     | 3.2: SI Engines fuel injection systems                                    |   |
|     | Types – port injection system, throttle injection system - MPFI –         | 5 |
|     | advantages and disadvantages of petrol injection system – Electronic      |   |
|     | Petrol Injection system - D-MPFI System - L-MPFI system - Group           |   |
|     | Injection System – Cold start injector.                                   |   |
|     | 3.3: CI Engines fuel injection system                                     | 5 |
|     | Requirement of ideal injection - Construction and working principle of    |   |
|     | Fuel pump – types of nozzles – Working principle of Electronically        |   |
|     | controlled diesel injection system - Working principle of common rail     |   |
|     | injection system. Fuel filters.                                           |   |
| IV  | IGNITION SYSTEMS                                                          |   |
|     | 4.1: Battery ignition system                                              |   |
|     | Requirement – Principle of battery ignition system for multi cylinder     | 4 |
|     | engines – Components of battery ignition system – Construction of         |   |
|     | Distributor - Spark plug - types.                                         |   |
|     | 4.2: Magneto ignition system                                              | 5 |
|     | Magneto ignition system – working principle – Advantages and              |   |
|     | disadvantages. Distributor less ignition system – Coil on plug ignition   |   |
|     | system. Ignition advance – Advancing mechanisms – Factors affecting       |   |
|     | the angle of advance and its effects.                                     |   |
|     | 4.3: Electronic ignition systems                                          | 5 |
|     | Electronic ignition systems – Transistorised Coil Ignition – Capacitive   |   |
|     | Discharge Ignition – Computer controlled coil ignition systems. Firing    |   |
|     | orders. Importance of ignition timing and ignition advance.               |   |
|     |                                                                           |   |

| V | COOLING SYSTEM, LUBRICATION SYSTEM, SUPER CHARGING,                       |   |
|---|---------------------------------------------------------------------------|---|
|   | TURBO CHARGING                                                            |   |
|   | 5.1: Cooling system                                                       | 5 |
|   | Introduction - effects of overheating - areas of heat flow. Air cooling   |   |
|   | system – Water cooling system - natural and forced circulation. Engine    |   |
|   | radiators. Hot and cold weather precautions – use of antifreeze solution. |   |
|   | 5.2: Lubrication System                                                   | 5 |
|   | Source of friction losses – Effect of frictional losses. Functions of     |   |
|   | lubrication – Required properties of lubricant – Additives and their      |   |
|   | function – Grades of lubricating oils. Lubricating system: Splash         |   |
|   | lubrication, Pressure feed lubrication – wet sump and dry sump –          |   |
|   | working principles. Oil filters - Crankcase ventilation.                  |   |
|   | 5.3: Super charging and Turbo charging                                    | 4 |
|   | Introduction – thermodynamic cycle with super charging – Types of         |   |
|   | super chargers – Arrangement of super chargers. Turbo charging:           |   |
|   | Functions – Types - Construction and working of Turbo charging of a       |   |
|   | single cylinder engine - advantages and disadvantages                     |   |

#### **Reference Books**

- 1. Thermal Engg, R.K.Rajput, 8<sup>th</sup> Edition, Laxmi publications Pvt Ltd.
- 2. Applied Thermodynamics, P.K. Nag, 2<sup>nd</sup> Edition, TATA McGraw Hill Publishing Co.
- 3. Thermal Engineering, R.S.Khurmi and J.K.Gupta, 18<sup>th</sup> Edition, S.Chand& Co.
- 4. Automobile engineering vol-1, vol-2, Kirpalsingh, Standard publishers.
- 5. Automobile Engineering, G.B.S.Narang, Khanna Publishers.
- 6. Automotive Mechanics, William H.Crouse and Donald L Anglin, Tata McGraw Hill Publishing Company Ltd.
- 7. The Automobile, Harbans Singh Reyat, S.Chand& Co Ltd.
- 8. Thermal Engineering, P.L.Ballaney, 24<sup>th</sup> Edition, Khanna Publishers.
- 9. Applied Thermodynamics, Domkundwar and C.P Kothandaraman, 2<sup>nd</sup> Edition, Khanna publishers.
- 10. Vehicle and Engine technology. Vol.-I, Heinz Heisler, ELBS
- 11. Automotive Mechanics, Joseph Heitner, East-west Press (P) Ltd.
- 12. Internal Combustion engines, M.L.Mathur & R.P.Sharma, Dhanpat Rai & Sons,

## Reference Web Link / Video

| Topic                             | Website | Link                                           |
|-----------------------------------|---------|------------------------------------------------|
| Thermal and Automobile            | Dote E- | https://www.youtube.com/watch?v=85K4_4PfRpQ    |
| Engineering                       | Lecture | &list=PL1b9Ht9ISqIG_szHgF6Fie9fdDpf8WOE0       |
| Heat Power Engineering            | Dote E- | https://www.youtube.com/watch?v=NpII017XBMI&I  |
|                                   | Lecture | ist=PL1b9Ht9ISqIGJgqTGxcqmSEwLa_WWI83e         |
| Fundamentals of automotive system | NPTEL   | https://nptel.ac.in/courses/107/106/107106088/ |

#### STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU

## DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1020 Diploma in Mechanical Engineering

Subject Code : 4020350

Semester : III

Subject Title : Machine Drawing and CAD Practical

#### TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

| Subject                | Instructions |          |                        | Examination           |       |          |
|------------------------|--------------|----------|------------------------|-----------------------|-------|----------|
| 4020350                | Hours        | Hours /  |                        | Marks                 |       |          |
| Machine<br>Drawing and | / Week       | Semester | Internal<br>Assessment | Board<br>Examinations | Total | Duration |
| CAD Practical          | 4            | 64       | 25                     | 100*                  | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

#### **RATIONALE:**

Mechanical Engineering Diploma Engineer is expected to possess a thorough understanding of drawing, which includes clear visualization and proficiency in reading and interpreting a wide variety of production drawing. Manufacturing of various parts start from the basic drawing of components. The assembly of components is also carried out from the drawing. So drawing is an important subject to be studied by the students to carry and complete the production and assembly process successfully.

#### **OBJECTIVES:**

- To learn the parts and assembly of the machine components.
- To appreciate the need for sectional view and types of sections.
- To draw sectional views.
- To practice manual drawing
- To use Computer Aided Drafting.

- To prepare geometrical model of various machine elements.
- To draw the different views of machine elements.
- To interpret the drawing in engineering field and illustrate three dimensional objects.

## 4020350 MACHINE DRAWING AND CAD PRACTICAL DETAILED SYLLABUS

Contents: Practical

#### PART-A: MANUAL DRAWING PRACTICE

Sectioning - sectional views - representation of sectional plane - hatching - inclination - spacing - hatching large areas - hatching adjacent parts - full section - half section - types of half sections - conventional representation of materials in section - Dimensioning.

Detailed drawings of the machine parts are given to students to assemble and draw any two views of the machine elements in the Drawing Sheet with dimensions. Front View /Full Section / Half SectionFront Viewand Top View / Left Side View / Right Side View.

#### PART-B: COMPUTER AIDED DRAFTING (CAD)

CAD applications – Hardware requirement – Software requirement – CAD screen interface – menus – Toolbars – types of co-ordinate system – Creating 2D objects – Using draw commands – Creating text – Drawing with precision – Osnap options – drafting settings – drawing aids – Fill, Snap, Grid, Ortho lines – Function keys – Editing and modify commands – Object selection methods – Erasing object – Oops – Cancelling and undoing a command – Copy – Move – Array – Offset – Scale – Rotate – Mirror – Break – Trim – Extend – Explode. Divide – Measure – stretch – Lengthen – Changing properties – Color – line types – LTscale – Matching properties – Editing with grips – Pedit – Ddedit – Mledit - Basic dimensioning – Editing dimensions – Dimension styles – Dimension system variables. Machine drawing with CAD. Creation of blocks – Wblock – inserting a block – Block attributes – Hatching – Pattern types – Boundary hatch – working with layers – Controlling the drawing display – Blipmode – View group commands – Zoom, redraw, regen, regenauto, pan, viewers – Realtime zoom. Inquiry groups – calculating area – Distance – Time – Status ofdrawing – Using calculator. Plot

Detailed drawings of the machine parts are given to students to assemble and create two views of the machine elements in the CAD package with dimensions. Front View / Sectional Front View (Full Section / Half Section) and Top View / Left Side View / Right Side View.

#### **EXERCISE:**

Draw the Front View / Sectional Front View (Full Section / Half Section) and Top View / Left Side View / Right Side View for the following given part drawing of the components after assemble in the drawing sheet and CAD package.

- 1. Sleeve & Cotter joint
- 2. Screw jack
- 3. Plummer Block
- 4. Simple Eccentric
- 5. Machine Vice
- 6. Protected type flanged coupling

#### **Reference Books:**

- 1. A Textbook of Machine Drawing, Pritam Singh Gill, S.K.Kataria & Sons.
- 2. Machine Drawing, N.D.Bhatt, V.M.Panchal, Charoter Publishing House.
- 3. Introducing Autocad 2010 and Autocad LT 2010, George Omura, Wiley India Pvt. Ltd.
- 4. A Textbook of Engineering Drawing, R.B.Gupta, Satya Prakasan, Technical India Publications.
- 5. Engineering Drawing, D.N. Ghose, Dhanpat Rai &Sons, Delhi

#### **Internal Mark Allocation**

#### Note:

All the students should maintain the observation cum record note book / manual as per the regulation. The printout of the actual CAD output created by the student during practice should be pasted for every exercise in the observation cum record note work.

For every exercise, manual drawing sheet (Two views) should be submitted and evaluated for 50 Marks. (Front view - 30 Marks and Top view/Side view - 20 Marks). The average of the six exercises should be converted to 10 Marks.

Drawing Sheet (Six Exercise Average) - 10 Mark
Observation and Record work - 10 Mark
Attendance - 05 Marks
Total - 25 Marks

#### **BOARD EXAMINATION**

**Note:** All the exercises should be completed by Manual and CAD. All the exercise should be given for examination, the students are permitted to select by lot or the question paper from DOTE should be followed. Observation cum Record note book should be submitted during examination along with the drawing file. Part A and Part B should be completed for the examination.

#### **PART A: Manual Drawing in the Drawing sheet**

Draw the assemble Front View / Sectional Front View (Full Section / Half Section) for the given part drawing of the components in the drawing sheet.

#### PART B: Computer Aided Drafting in the CAD package

Create the assemble Front View / Sectional Front View (Full Section / Half Section) and Top View / Left Side View / Right Side View for the given part drawing of the components in any one of the CAD package.

#### **DETAILLED ALLOCATION OF MARKS**

Manual Drawing in Drawing sheet : 30 marks

Assemble Front view 30

Computer Aided Drafting : 60 marks

Drafting 20
Assembly 20
Dimensioning 20

Viva-voce : 10 marks
Total : 100 marks

#### **LISTOF EQUIPMENT (For 30 students)**

1. Personal computer − 30 Nos.

2. Printer – 1 No.

3. Required Software's: CAD Package – Sufficient to the strength.

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code: 4021460

Semester : IV

Subject Title : Automobile Electrical and Electronics Systems Practical

#### TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

| Subject        | Instructions |          |                | Examination  | 1     |          |
|----------------|--------------|----------|----------------|--------------|-------|----------|
| 4021460        | Hours /      | Hours /  |                | Marks        |       |          |
| Automobile     |              |          | Internal       | Board        |       | Duration |
| Electrical and | Week         | Semester | Assessment     | Examinations | Total |          |
| Electronics    |              |          | 7.000001110111 | Zxammationo  |       |          |
| Systems        | 4            | 64       | 25             | 100*         | 100   | 3 Hrs.   |
| Practical      |              |          | _              |              |       |          |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

#### **OBJECTIVES:**

- Evaluating the parts of an Alternator and testing an assembled alternator same on a test bench for proper operation.
- Evaluating the parts of a Starter Motor and testing an assembled Starter Motor on a Test Bench for proper operation.
- Understanding the need for setting of proper ignition timing..
- To understand the Working Principle of Auxiliary Systems
- To understand the Use of Sensors and to test them in an Automobile.
- To construct Electrical Circuits in Automobile and make simple electrical circuits with proper Electrical Symbols, Cable Sizes &Colour Codes.

#### 4021460 AUTOMOBILE ELECTRICAL AND ELECTRONICS SYSTEMS PRACTICAL

#### **Experiments**

#### Part - A

- Testing of Alternator Parts such as Stator, Rotor and Rectifier for Resistance, Continuity for Insulation Effectiveness using Multifunction Tester.
- 2. Testing of Starter Motor Parts such as Test Field Windings, Brush Holders, Armature and Solenoid Switch for Continuity Using Multifunction Tester
- 3. Testing of Electronics fuel Ignition system
- 4. Servicing of the Wiper Motor and Horns Tuning.
- 5. Identifying and testing of the various terminals of 4-Point, 5-Point, 6-Point & 8-Point Relays through their markings using Multifunction Tester
- 6. Testing of Stepper motor drive

#### Part - B

- Construction and Testing of Half Wave Rectifier, Full Wave Bridge Rectifier without Filters.
- 2. Identification and testing of display devices- LED, 7 segment LED
- 3. Testing of various Sensors using Multifunction Tester
- 4. Construction and Testing of Fuel and Temperature Gauges Circuit.
- Construction and Testing of Head Lights, Parking Lights and Direction Indicators Circuit.
- 6. Connection and Testing of MCB, ELCB

#### **BOARD EXAMINATION**

#### Note:

- All the exercises/experiments in both sections should be completed. Two
  exercises/experiments will be given for examination by selecting one from PART A
  and one from PART B.
- All the exercises/experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machineries / equipments before commencement of the board practical examination.

#### **DETAILLED ALLOCATION OF MARKS**

| SI. No. | Description        | Max. Marks |  |  |  |  |
|---------|--------------------|------------|--|--|--|--|
|         | Part- A            |            |  |  |  |  |
| 1       | Circuit Diagram    | 10         |  |  |  |  |
| 2       | Connection/Reading | 20         |  |  |  |  |
| 3       | Calculation/Graph  | 15         |  |  |  |  |
|         | Part- B            |            |  |  |  |  |
| 4       | Circuit Diagram    | 10         |  |  |  |  |
| 5       | Connection/Reading | 20         |  |  |  |  |
| 6       | Calculation/Graph  | 15         |  |  |  |  |
| 7       | Viva-voce          | 10         |  |  |  |  |
|         | Total 100          |            |  |  |  |  |

# LIST OF EQUIPMENT / TOOLS/MACHINERY'S REQUIRED (for a batch of 30 students)

| SI. No. | Machinery's / Equipment / Tools            | Quantity  |
|---------|--------------------------------------------|-----------|
| 1.      | Alternator                                 | 2 No's    |
| 2.      | Starter Motor                              | 2 No's    |
| 3.      | Wiper Motor                                | 2 No's    |
| 4.      | Horn                                       | 2 No's    |
| 5.      | Relay ( 4 point, 5 point, 6 point,8 point) | Each 1 No |
| 6.      | Stepper motor drive kit                    | 1 No      |
| 7.      | Engine crankshaft angular position sensor  | 2 No's    |
| 8.      | Speed sensor                               | 2 No's    |
| 9.      | Pressure sensor                            | 2 No's    |
| 10.     | Fuel gauge                                 | 1 No      |
| 11.     | Knock sensor                               | 1 No      |
| 12.     | Oxygen sensor                              | 1 No      |
| 13.     | Temperature gauge                          | 1 No      |
| 14.     | Head Light                                 | 1 No      |
| 15      | Parking Light                              | 1 No      |
| 16      | Direction Indicator                        | 1 Set     |
| 17.     | Electronic fuel Ignition Systems kit       | 1 No      |
| 18.     | ELCB                                       | 1 No      |
| 19.     | MCB                                        | 1 No      |
| 20.     | Transformer (230 V/ 6 V)                   | 2 No's    |
| 21.     | Transformer (230 V/ 6 V – 0 V- 6 V)        | 2 No's    |
| 22.     | Diode 1N4007                               | 10 No's   |
| 23.     | Bread Board                                | 2 No's    |
| 24.     | Digital Multimeter                         | 1 No      |
| 25.     | Analog Multimeter                          | 1 No      |

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021470

Semester : IV

Subject Title : Automotive Engines Practical

#### **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject                          | Instructions    |                     | Examination            |                          |       |          |
|----------------------------------|-----------------|---------------------|------------------------|--------------------------|-------|----------|
| 4021470<br>Automotive<br>Engines | Hours /<br>Week | Hours /<br>Semester | Internal<br>Assessment | Marks Board Examinations | Total | Duration |
| Practical                        | 4               | 64                  | 25                     | 100*                     | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

#### **Objectives**

- To Study the Flash and the Fire Point of a Fuel
- To Gain the Practical Exposure on Engine Port and Valve Timings
- To find the Viscosity of Lubricants.
- To find the COP of a refrigerator
- To study the various parts of an Engine
- To get an exposure on assembly and functioning of various pumps and injector.
- To study about MPFI and CRDI systems

#### 4021470 AUTOMOTIVE ENGINES PRACTICAL

#### **Experiments**

#### PART A

- 1. Find Flash and Fire point of fuel using open cup and closed cup apparatus and compare the value for the given sample.
- 2. Find Viscosity of lubricating oil using Saybolt viscometer.
- 3. Find Viscosity of lubricating oil using Red wood viscometer.
- 4. Draw the Port timing diagram of a single cylinder two stroke diesel engine or petrol engine
- 5. Draw the Valve timing diagram of a single cylinder four stroke diesel engine or petrol engine.
- 6. Determine the COP of the vapour compression refrigerator system.

#### **PARTB**

- Dismantle and assemble camshaft, timing gear and valves. Adjust the valve Clearance.
- 2. Dismantle and assemble oil pump and water pump after inspection and service.
- 3. Dismantle and assemble the fuel pump in a petrol engine after inspection and service.
- 4. Dismantle and assemble the distributor pump and injector after inspection and service.
- 5. Identify the components of the MPFI system in the kit.
- 6. Identify the components of the CRDI system in the kit.

#### **BOARD EXAMINATION**

#### Note:

- All the exercises/experiments in both sections should be completed. Two
  exercises/experiments will be given for examination by selecting one from PART A
  and one from PART B.
- All the exercises/experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machineries / equipments before commencement of the board practical examination.

#### **DETAILLED ALLOCATION OF MARKS**

| SI. No. | Description                         | Max. Marks |  |  |  |
|---------|-------------------------------------|------------|--|--|--|
| Part- A |                                     |            |  |  |  |
| 1       | Procedure                           | 10         |  |  |  |
| 2       | Tabular Column / Formulae           | 10         |  |  |  |
| 3       | Observation / Calculation / Diagram | 25         |  |  |  |
| 4       | Result / Graph                      | 5          |  |  |  |
|         | Part- B                             | '          |  |  |  |
| 5       | Procedure / Explanation             | 10         |  |  |  |
| 6       | Observation / Dismantling           | 15         |  |  |  |
| 7       | Result / Assemble                   | 15         |  |  |  |
|         | Viva-voce                           | 10         |  |  |  |
|         | Total                               | 100        |  |  |  |

### LIST OF EQUIPMENT / TOOLS/MACHINERY'S REQUIRED

## (for a batch of 30 students)

| SI. No. | Machinery's / Equipment / Tools                 | Quantity            |  |
|---------|-------------------------------------------------|---------------------|--|
| 1       | Open cup apparatus                              | 1 No.               |  |
| 2       | Closed cup apparatus                            | 1 No.               |  |
| 3       | Saybolt viscometer                              | 1 No.               |  |
| 4       | Redwood viscometer                              | 1 No.               |  |
| 5       | Two stroke diesel or petrol engine cut section  | 1 No.               |  |
| 6       | Four stroke diesel or petrol engine cut section | 1 No.               |  |
| 7       | Refrigerator test rig                           | 1 No                |  |
| 8       | Four stroke diesel engine cut section model     | 1 No                |  |
| 9       | Cam shaft                                       | 1 No                |  |
| 10      | Timing gear                                     | 1 No                |  |
| 11      | Oil & water pump                                | 1 No (each)         |  |
| 12      | Fuel pump                                       | 1 No                |  |
| 13      | Distributor pump                                | 1 No                |  |
| 14      | Injector                                        | 1 No                |  |
| 15      | MPFI Kit                                        | 1 No                |  |
| 16      | CRDI Kit                                        | 1 No                |  |
| 17      | Basic and special tools                         | sufficient quantity |  |
| 18      | Service tools                                   | sufficient quantity |  |
| 19      | Consumables                                     | sufficient quantity |  |

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021510

Semester : V

Subject Title : Fuels, Combustion and Emission Control

#### **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject              | Instr   | uctions  | Examination |                       |       |          |
|----------------------|---------|----------|-------------|-----------------------|-------|----------|
| 4021510              | Hours / | Hours /  | Intornal    | Marks                 |       | Duration |
| Fuels,<br>Combustion | Week    | Semester |             | Board<br>Examinations | Total | Duration |
| and Emission Control | 6       | 96       | 25          | 100*                  | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

#### **Topics and Allocation of Hours**

| UNIT | TOPIC                                                | TIME |  |  |
|------|------------------------------------------------------|------|--|--|
| I    | Fuels and Combustion                                 | 18   |  |  |
| II   | Energy, Fuel for IC engines, Alternate Fuels         | 18   |  |  |
| III  | Combustion in SI Engines, CI Engines, Air Pollution  | 18   |  |  |
| IV   | Filters and Manifolds, Engine Noise, Exhaust Control | 18   |  |  |
| V    | Pollution and Emission Control standards and Act.    | 17   |  |  |
|      | Test & Revision                                      |      |  |  |
|      | Total                                                | 96   |  |  |

#### **RATIONALE**

Impart knowledge on the basics of fuels and its types. The need for alternate fuels and emission and pollution control and its standards are taught.

#### **OBJECTIVES**

At the end of the course, the students will be able

- To understand the types of fuel, the methods for determining the calorific values of fuels, combustion calculations and the nuances of combustion.
- To create an awareness on air pollution due to I.C. engines and its ill effects.
- To study the methods of reducing or eliminating the harmful gases from engine and gas turbine exhausts.
- To study the different norms and legislations to put a check over the air pollution.
- To study the concepts of alternative fuels, automobile pollution and control.

## 4021510 FUELS, COMBUSTION AND EMISSION CONTROL <u>DETAILED SYLLABUS</u>

Contents: Theory

| Unit | Name of the Topics                                                          | Hours |  |  |  |
|------|-----------------------------------------------------------------------------|-------|--|--|--|
| I    | FUELS AND COMBUSTION                                                        |       |  |  |  |
|      | 1.1: Fuels                                                                  |       |  |  |  |
|      | Classification - solid fuels - liquid fuels - gaseous fuels - merits and    | 6     |  |  |  |
|      | demerits - requirement of good fuel - calorific value of fuels - Higher     |       |  |  |  |
|      | calorific value - lower calorific value - Construction and working of bomb  |       |  |  |  |
|      | calorimeter and gas calorimeter – simple problems.                          |       |  |  |  |
|      | 1.2: Combustion                                                             |       |  |  |  |
|      | Combustion - Elements and compounds – atoms and molecules – atomic          |       |  |  |  |
|      | weight - molecular weight - combustion of solid fuels - combustion of       |       |  |  |  |
|      | gaseous fuels - theoretical weight of air required for complete combustion  |       |  |  |  |
|      | - theoretical volume of air required for complete combustion – Gravimetric  |       |  |  |  |
|      | analysis – Volumetric analysis – Weight of carbon in flue gases – weight    |       |  |  |  |
|      | of flue gases per kg of fuel burnt – Excess air supplied – weight of excess |       |  |  |  |
|      | air supplied - simple problems.                                             |       |  |  |  |
|      |                                                                             |       |  |  |  |

#### II ENERGY AND ALTERNATE FUELS

#### 2.1: Energy

Estimation of petroleum reserve – World Energy Scenario - Energy Survey of India – survey of oil consumption in India - Availability of petroleum products in India. Indian initiatives in alternate fuels. Fuels for IC Engines: Introduction – Desirable properties - Classification – Description the processing of crude oil – Fuels for SI Engines – octane number – octane rating - Fuels for CI Engines – cetane number – cetane rating.

#### 2.2: Alternate Fuels

Introduction – list of alternate fuels - Need for alternate fuel – Availability of alternate fuels. Air craft fuels – Liquefied Petroleum Gas (LPG): Schematic diagram of LPG engine – advantages and disadvantages. Compressed Natural Gas (CNG): Schematic diagram of CNG engine – emissions - advantages and disadvantages. Ethanol: production process – emissions - advantages and disadvantages. Methanol: production process – emissions - advantages and disadvantages. Alcohol (Diesel Blends) – Dimethyl ether – Bio diesel.

### III COMBUSTION IN SI ENGINES, CI ENGINES AND AIR POLLUTION

#### 3.1: Combustion in SI engines

Ignition limit – combustion stages – factors affecting SI combustion – Detonation and its effects – methods to control detonation - requirement of combustion chamber – types – emission of SI engines.

#### 3.2: Combustion in CI engines

Combustion stages – factors affecting delay period – knocking of CI engines – methods to control knocking - requirement of combustion chamber – types – emissions of CI engines – particulate matter emissions.

#### 3.3: Air Pollution

Introduction - Need - pollutants - sources of pollutants. Exhaust gas analysis: Orsat apparatus - construction and working principle. Smoke meter - exhaust gas analyser - Working principle. Control of smoke emissions from IC engines.

U

10

6

| IV | FILTERS AND MANIFOLDS FOR IC ENGINES, ENGINE NOISE AND                         |   |
|----|--------------------------------------------------------------------------------|---|
|    | EXHAUST CONTROL                                                                |   |
|    | 4.1: Filters and manifolds for IC Engines                                      | 6 |
|    | Air filters – maintenance of air filter – cleaning of air filters. Engine fuel |   |
|    | filter – types – maintenance. Engine oil filter – uses. Manifolds:             |   |
|    | Introduction – intake manifold - factors involved in design. Exhaust           |   |
|    | manifold – maintenance.                                                        |   |
|    | 4.2: Engine Noise                                                              | 5 |
|    | Engine noise sources - Engine noise reduction - exhaust muffler -              |   |
|    | description – types – Engine silencers – selection of silencer.                |   |
|    | 4.3: Exhaust control                                                           | 7 |
|    | Construction and working principles of Catalytic converter, Diesel             |   |
|    | particulate filter, Exhaust Gas Recirculation, Learn burn engine and           |   |
|    | Oxygen Sensor (Lambda Sensor). Crank case emission control –                   |   |
|    | evaporative emission control systems.                                          |   |
| V  | POLLUTION AND EMISSION CONTROL STANDARDS AND ACT.                              |   |
|    | The air prevention and control of pollution act 1981 – introduction –          | 7 |
|    | functions of central boards – functions of state board – power of the board    |   |
|    | - prevention and control of air pollution - penalties and procedure.           |   |
|    | Emission standards - Indian standards of emission for petrol and diesel        | 6 |
|    | engines – Bharat Stage emission standards – BS IV, BS VI. Impact of            |   |
|    | shifting to BS VI. Euro standards – EURO 4, EURO 5 and EURO 6. Japan           |   |
|    | emission standards.                                                            |   |
|    | Fuel quality standards. Microprocessor based control system – computer         | 4 |
|    | controls in automobiles. Pollution controlled vehicles.                        |   |
|    |                                                                                |   |

#### **Reference Books:**

- 1. Automobile Technology, R.B.Gupta, SatyaPrakashan, New Delhi.
- 2. Internal Combustion Engines, Taylor C F, MIT Press.
- 3. Internal Combustion Engine Fundamentals, Heywood J B, McGraw Hill Book Co.
- 4. Internal combustion engine, Ramalingam. K.K., SciTech publications.
- 5. Advanced IC engines, S.S.Thipse, Jaico Publishing House
- 6. Alternative Fuels Guide Book, Bechtold, R.L., SAE, 1997.

- 7. Alcohols and motor fuels progress in technology, Series No.19, SAE Publication USA 1980.
- 8. SAE Paper Nos.840367, 841156, 841333, 841334.
- 9. The properties and performance of modern alternate fuels SAE Paper No.841210.
- 10. Automobile pollution, Dr. Satykush, IVY Publishing House.
- 11. Service Manuals from Different Vehicle Manufacturers.
- 12. Internal Combustion Engines, "Ganesan.V", Tata-McGraw Hill Publishing Co.
- 13. Engine Emission, "Springer and Patterson", Plenum Press, 1990.
- 14. SAE transactions, "vehicle emission", 1982 (3 volumes).
- 15. The Air prevention and control of pollution Act, 1981
- 16. Bharat Stage Emission Standards (BS Norms)
- 17. Japan Emission Norms

#### Reference Web Link / Video

| Topic                             | Website | Link                                           |
|-----------------------------------|---------|------------------------------------------------|
| Engine Combustion                 | NPTEL   | https://nptel.ac.in/courses/112/104/112104033/ |
| Fundamentals of automotive system | NPTEL   | https://nptel.ac.in/courses/107/106/107106088/ |

## Blank page

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021520

Semester : V

Subject Title : Power Units and Transmission

#### **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject                       | Instr           | uctions             | Examination            |                            |       |          |
|-------------------------------|-----------------|---------------------|------------------------|----------------------------|-------|----------|
| 4021520<br>Power Units<br>and | Hours /<br>Week | Hours /<br>Semester | Internal<br>Assessment | Marks  Board  Examinations | Total | Duration |
| Transmission                  | 5               | 80                  | 25                     | 100*                       | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

### **Topics and Allocation of Hours**

| UNIT | TOPIC                                           | TIME |  |  |  |
|------|-------------------------------------------------|------|--|--|--|
| I    | Frame, Front Axle and Steering System           | 15   |  |  |  |
| II   | Clutch and Gear Box                             |      |  |  |  |
| III  | Final Drive, Differential and Hydrostatic Drive | 15   |  |  |  |
| IV   | Suspension System and Rear Axle                 | 14   |  |  |  |
| V    | V Braking System, Wheels and Tires              |      |  |  |  |
|      | Test & Revision                                 |      |  |  |  |
|      | Total                                           |      |  |  |  |

#### **RATIONALE:**

This subject provides knowledge about the various components of vehicle and the transmission train used. This subject will also help the students during inspection, installation, operation and maintenance of transmission system of automobile. This subject is a core subject for automobile engineers and they should develop desired knowledge and skills over it.

#### **OBJECTIVES:**

- To Understand the Various Transmission Members of the Automotive Vehicle.
- To Understand the Principle of Operation of Clutch.
- To Understand Working and Construction of Various Types of Gear Boxes.
- To Understand Working of Automatic Transmission.
- To Understand the Types and Working of Driveline.
- To Understand the Working of Differential Mechanism.
- To Understand the Types of Rear Axles.
- To Understand Types of Wheels and Tire.
- To Understand the Working of Braking System

# 4021520 POWER UNITS AND TRANSMISSION <u>DETAILED SYLLABUS</u>

Contents: Theory

| Unit | Name of the Topics                                                          | Hours |  |  |
|------|-----------------------------------------------------------------------------|-------|--|--|
| I    | FRAME, FRONT AXLE AND STEERING SYSTEM                                       |       |  |  |
|      | 1.1: Frame                                                                  |       |  |  |
|      | Chassis - Types of Chassis Layout - Various Types of Frames - Loads         | 3     |  |  |
|      | Acting on Vehicle Frame.                                                    |       |  |  |
|      | 1.2: Front Axle                                                             |       |  |  |
|      | Construction - Beam and Tubular. Classification of Axle According to their  |       |  |  |
|      | function - Live Axle and Dead Axle. Stub Axle: Types of Stub Axle - Elliot, |       |  |  |
|      | Reverse Elliot, Lemoine and Reverse Lamoine.                                |       |  |  |
|      | 1.3: Steering System                                                        | 7     |  |  |
|      | Ackerman's and Davi's Steering Mechanisms. Front Wheel Geometry -           |       |  |  |
|      | Castor, Camber, King Pin Inclination, Toe-In and Toe-Out. Types of          |       |  |  |

|     | Steering Gear Boxes - Recirculating Ball and Rack & Pinion. Power and          |    |
|-----|--------------------------------------------------------------------------------|----|
|     | Power Assisted Steering.                                                       |    |
| II  | CLUTCH AND GEAR BOX                                                            |    |
|     | 2.1: Clutch                                                                    |    |
|     | Role of Clutch in Driving System, Requirements of Transmission System.         | 8  |
|     | Construction and Working Principle of Different Types of Clutches - Single     |    |
|     | Plate Clutch, Multiplate Clutch, Cone Clutch, Centrifugal Clutch, Semi-        |    |
|     | Centrifugal Clutch and Diaphragm Clutch. Hydrodynamic Transmission -           |    |
|     | Fluid Coupling and Torque Converter.                                           |    |
|     | 2.2: Gear Box                                                                  | 7  |
|     | Objective of the Gear Box. Types of Gear Boxes – Sliding Mesh, Constant        |    |
|     | Mesh and Synchromesh Device. Epicyclic Gear Box.Automatic Over-                |    |
|     | Drive. 4 Wheel Drive - Transfer Cases. Continuously Variable                   |    |
|     | Transmission.                                                                  |    |
| III | FINAL DRIVE, DIFFERENTIAL AND HYDROSTATIC DRIVE                                |    |
|     | 3.1: Final Drive                                                               |    |
|     | Universal Joints – Purpose. Types of Universal Joint - Variable Velocity       | 10 |
|     | Joints - Spider Type, Ring Type And Ball and Trunnion Type, Constant           |    |
|     | Velocity Joints - Rzeppa, Bendix Weiss and Tracta. Propeller Shaft, Rear       |    |
|     | Axle Drives - Hotchkiss Drive and Torque Tube Drive. Final Drive -             |    |
|     | Different Types of Final Drive - Worm and Worm Wheel, Straight Bevel           |    |
|     | Gear, Spiral Bevel Gear and Hypoid Gear Final Drive.                           |    |
|     | 3.2: Differential and Hydrostatic Drive                                        | 5  |
|     | Differential – Principle and Constructional Details of Differential Unit, Non– |    |
|     | Slip Differential, Differential Locks. Front Wheel Drive. Hydrostatic Drive.   |    |
| IV  | SUSPENSION SYSTEM AND REAR AXLE                                                |    |
|     | 4.2: Suspension System                                                         |    |
|     | Need for Suspension System, Types of the Suspension System -Rigid              | 10 |
|     | Axle Suspension and Independent Suspension. Types of Suspension                |    |
|     | Springs - Leaf Springs - Quarter Elliptic, Semi Elliptic, Three Quarter        |    |
|     | Elliptic, Full Elliptic and Transverse Leaf Spring, Coil Spring, Torsion Bar,  |    |
|     | Air Bags and Rubber Spring. Antiroll Bar, Function and Construction of         |    |
|     | Hydraulic Dampers - Shock Absorbers. Active Suspension System                  |    |

|   | 4.1: Rear Axle                                                            | 4 |
|---|---------------------------------------------------------------------------|---|
|   | Types Of Rear Axles -Semi-Floating Axle, Full-Floating Axle, Three        |   |
|   | Quarter Floating Axle. Multi Axles Vehicles.                              |   |
| ٧ | BRAKING SYSTEM, WHEELS AND TIRES                                          |   |
|   | 5.1: Braking System                                                       | 9 |
|   | Need for Brake Systems, Stopping Distance. Brake Types - Drum And         |   |
|   | Disc Brakes. Types of Braking Systems - Mechanical Braking System,        |   |
|   | Hydraulic Braking System and Pneumatic Braking System. Principle of       |   |
|   | Master Cylinder, Wheel Cylinder, Leading and Trailing Shoes. Power –      |   |
|   | Assisted Braking System, Servo Brakes. Antilock Braking System.           |   |
|   | Bleeding Of Brakes. Parking Brakes.                                       |   |
|   | 5.2: Wheels And Tires                                                     | 6 |
|   | Wheels - Types of Wheels - Spoked, Pressed Steel and Cast Alloy           |   |
|   | Wheel. Tires -Types of Tires - Cross Ply Tires, Radial Tires and Tubeless |   |
|   | Tires. Run Flat Tires. Causes of Excessive Tire Wear. Care and            |   |
|   | Maintenance of Tires.                                                     |   |

#### **Reference Books:**

- 1. Chassis, Body and Transmission, Vijay Singh & Raj Kumar, Ishan Publications, Jalandhar.
- 2. Automotive Transmission & Power Train, William H. Grouse.
- 3. Modern Transmission systems, Judge, A.W., Chapman and Hall Ltd., 1990
- 4. Advanced Vehicle Technology, Heinz Heisler, 2nd Edition, 2002, Butterworth-Heinemann
- 5. Dr.kripal Sing, Automobile Engineering Vol 1 & 2, Standard Publisher Distributors , Delhi

#### Reference Web Link / Video

| Topic             | Website | Link                                           |
|-------------------|---------|------------------------------------------------|
| Fundamentals of   | NPTEL   | https://nptel.ac.in/courses/107/106/107106088/ |
| automotive system |         |                                                |

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021531

Semester : V

Subject Title : Two-Wheeler and Three-Wheeler Technology

#### **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject               | Instr   | uctions  | Examination  |       |       |          |
|-----------------------|---------|----------|--------------|-------|-------|----------|
| 4021531               | Hours / | Hours /  |              | Marks |       |          |
| Two-Wheeler           | Week    | Semester | Internal     | Board | Total | Duration |
| and Three-            | VVCCK   |          | Examinations | iotai |       |          |
| Wheeler<br>Technology | 5       | 80       | 25           | 100*  | 100   | 3 Hrs.   |
| reciliology           |         |          |              |       |       |          |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

#### **Topics and Allocation of Hours**

| UNIT | TOPIC                                  | TIME |
|------|----------------------------------------|------|
| I    | The Power Unit and Fuel System         | 15   |
| II   | Ignition Systems and Electrical System | 15   |
| III  | Chassis and Sub Systems                | 15   |
| IV   | Transmission System, Brakes and Wheels | 14   |
| V    | Two and Three Wheeler                  | 14   |
|      | Test & Revision                        |      |
|      | Total                                  |      |

#### Rationale:

There is an increase in need of public transport in cities and rural areas. This has lead to huge demand of two and three wheelers. Presently Two and three wheelers play an important role in the public transport in all over the world. The subject is pre-requisite for understanding concept of transmission unit, fuel system, electrical system Chassis, wheels, tires and maintenance and servicing of two and three wheelers.

#### Objectives:

At the end of the course, the students will be able

- To learn the different types of two and three wheelers.
- To learn the components and their importance and working in two and three wheelers.
- To learn the maintenance of two and three wheelers.
- To present a problem oriented in depth knowledge of two and three wheeler technology.
- To address the underlying concepts and methods behind two and three wheeler technology.

# 4021531 TWO-WHEELER AND THREE-WHEELER TECHNOLOGY DETAILED SYLLABUS

**Contents: Theory** 

| Unit | Name of the topic                                                          | Hours |
|------|----------------------------------------------------------------------------|-------|
| ı    | THE POWER UNIT AND FUEL SYSTEM                                             |       |
|      | 1.1: The power unit                                                        | 8     |
|      | Two stroke and four stroke - SI & CI engine construction and working -     |       |
|      | merits and demerits. Engine selection criteria for two-wheeler and three   |       |
|      | wheeler. Valve operating mechanism. Symmetrical and unsymmetrical          |       |
|      | valve & port timing diagrams - Construction and function of exhaust        |       |
|      | system: Muffler types and their applications – Tail pipe arrangement and   |       |
|      | location - scavenging process.                                             |       |
|      | 1.2: Fuel system                                                           | 7     |
|      | Fuel system: Carburetor – functions – working principle. Electronic petrol |       |
|      | injection system. Lubrication system in four stroke engines - Emission     |       |
|      | control system – Working of Catalytic convertor, Exhaust Gas               |       |
|      | Recirculation, Positive crankcase ventilation.                             |       |
|      |                                                                            |       |

| II  | IGNITION SYSTEMS AND ELECTRICAL SYSTEM                                      |   |
|-----|-----------------------------------------------------------------------------|---|
|     | 2.1: Ignition systems                                                       |   |
|     | Ignition systems - Magneto coil - battery coil ignition system - Electronic | 9 |
|     | ignition System. Starting system - Kick starter system - Self starter       |   |
|     | system. DTSI - Speedo meter - Mechanical and Digital - Construction         |   |
|     | and working.                                                                |   |
|     | 2.1: Electrical system                                                      |   |
|     | Battery - Ratings in Two and Three wheelers. Layout of electrical system    |   |
|     | in two and three wheelers. Dash units – Use of Speedo meter, trip meter,    | 6 |
|     | engine speed indicator/tachometer. Arrangements of Head lamp - tail         |   |
|     | lamp and indicator light.                                                   |   |
| III | CHASSIS AND SUB SYSTEMS                                                     |   |
|     | 3.1: Chassis                                                                |   |
|     | Main frame for two and three wheelers: Single cradle frame - double         | 7 |
|     | cradle frame - Tubular frame - twin-spar frame. Chassis: Conventional       |   |
|     | chassis -integral construction. Layout of two-wheeler and three-wheeler     |   |
|     | vehicle. Different drive systems for two wheelers and three wheelers        |   |
|     | 3.2: Sub systems                                                            | 8 |
|     | Clutch -Single plate, multiple plate wet and centrifugal clutch- Gear box-  |   |
|     | Constant mesh and sliding mesh- CVT -Continuously variable                  |   |
|     | Transmission-Gear controls in two wheelers. Front and rear suspension       |   |
|     | systems- Shock absorbers. Panel meters and controls on handle bar of        |   |
|     | two and three wheelers.                                                     |   |
| IV  | TRANSMISSION SYSTEM, BRAKES AND WHEELS                                      |   |
|     | <b>4.1: Transmission system:</b> Layout of transmission system – Multi-disc |   |
|     | clutch – chain drive – belt drive – gear box: Constant mesh gear box        | 7 |
|     | working principle – gear shifting mechanism.                                |   |
|     | 4.2: Brakes and Wheels: Drum brakes & Disc brakes for two and three         |   |
|     | wheelers - Construction and Working and its Types - Front and Rear          |   |
|     | brake link layouts. Brake actuation mechanism. Selection criteria of        | 7 |
|     | wheels and tires – Wheels: Spoked wheel, cast wheel, Disc wheel & its       |   |
|     | merits and demerits. Tires and tubes Construction & its Types.              |   |

| V | TWO AND THREE WHEELER                                                   |   |
|---|-------------------------------------------------------------------------|---|
|   | 5.1: Two wheeler                                                        |   |
|   | Two wheeler- case study of Sports bike, Motor cycles, Scooters and      | 6 |
|   | Mopeds – Parts, Components, maintenance and servicing.                  |   |
|   | 5.2: Three wheeler and E-Vehicle                                        |   |
|   | Three wheeler- Case study of Auto rickshaws, Pick up van, Delivery van  |   |
|   | Trailer- parts, components, maintenance and Servicing.                  | 8 |
|   | E-Vehicle: Manufacturer in India – two wheeler and three wheeler models |   |
|   | - Compare.                                                              |   |

#### **Reference Book**

- 1. Irving P.E Motor Cycle Engineering. Temple Press Book London.
- 2. The Cycle Motor manual Temple Press Ltd London
- 3. Maintenance Manuals of Leading Two & Three Wheelers Manufacturers in India.
- 4. Dr.Kirpal Sing, Automobile Engineering Vol 1 & 2, Standard Publisher Distributors , Delhi
- 5. Dhruv U. Panchal, Two and Three Wheeler Technology, PHI Learning Private Limited, Delhi

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021532

Semester : V

Subject Title : Tractor and Farm Equipment

#### **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject     | Instructions |          | Examination |              |       |          |
|-------------|--------------|----------|-------------|--------------|-------|----------|
| 4021532     | Hours /      | Hours /  |             | Marks        |       |          |
| Tractor and | Week         | Semester | Internal    | Board        | Total | Duration |
| Farm        | Trook        | Comocion | Assessment  | Examinations | lotai |          |
| Equipment   | 5            | 80       | 25          | 100*         | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

### **Topics and Allocation of Hours**

| UNIT | TOPIC                                      | TIME |
|------|--------------------------------------------|------|
| I    | General Design of Tractors and Accessories | 15   |
| II   | Ploughing Implements                       | 15   |
| III  | Harvesting and Threshing Equipments        | 15   |
| IV   | Sprayers and Dusters                       | 14   |
| V    | Maintenance of Tractors                    | 14   |
|      | Test & Revision                            |      |
|      | Total                                      | 80   |

#### Rationale:

Farm equipment provide higher work output rates to sustain higher demand for increased agricultural production. Farm tools, implements, and equipment play very important role in horticultural operations. Their availability makes the work much easier and faster. However, even if one may have the most sophisticated tools and implements, but does not know how to use them, they are useless. This subject designed to understand the basic farm equipment.

#### **Objectives:**

At the end of the course, the students will be able

- To learn the types of tractors and its operating principles.
- To study about the ploughing implements.
- To understand the harvesting and threshing equipment.
- To address the fertilizers and equipment used for it.
- To know the maintenance procedure of tractors

# 4021532 TRACTOR AND FARM EQUIPMENT DETAILED SYLLABUS

#### **Theory**

| Unit | Name of the Topics                                                          | Hours |
|------|-----------------------------------------------------------------------------|-------|
| I    | GENERAL DESIGN OF TRACTORS AND ACCESSORIES                                  |       |
|      | Classification of Tractors –Track laying tractor – heavy wheeled tractors – | 7     |
|      | general purpose tractors – two wheeled tractors.                            |       |
|      | Main components of Tractor – safety rules – Power Take Off Shaft – Belt     | 8     |
|      | pulley – Power Tiller. The tractor hydraulic system – operating principle.  |       |
| II   | PLOUGHING IMPLEMENTS                                                        |       |
|      | Primary and Secondary Tillage equipment - DISC Plough – Mould Board         | 8     |
|      | Plough – Tiller and Harrows – Construction and maintenance – furrow         |       |
|      | mounted plough - plough controls - Mounting the plough - ploughing          |       |
|      | methods systematic ploughing, round and round ploughing and one way         | 7     |
|      | ploughing - hitching – Three point linkage – Cage Wheel and its uses.       |       |
|      |                                                                             |       |

| III | HARVESTING AND THRESHING EQUIPMENTS                                             |   |
|-----|---------------------------------------------------------------------------------|---|
|     | Harvesting – conventional and Modern Harvesters – Threshing – Principle         | 8 |
|     | of Paddy Threshers construction and maintenance – combine –                     |   |
|     | construction and advantages, disadvantages – safety precautions.                |   |
|     | Cultivation machinery – cultivators – effecs and uses of cultivator – disc      |   |
|     | harrows – spring tine cultivator – seed harrows – effects and uses – chain      |   |
|     | harrows – effects and uses – rotary cultivator – uses.                          |   |
|     | Corn drills – seed metering mechanisms – depth of sowing – fertilizer           | 7 |
|     | metering unit – checking the sowing rate. – Combine harvester – potato          |   |
|     | crop machinery – hand feed and automatic – sugar feet crop machinery.           |   |
| IV  | SPRAYERS AND DUSTERS                                                            |   |
|     | Classification of sprayers and dusters Manual and Power sprayers and            | 7 |
|     | Dusters – components of sprayers and dusters – different pumps,                 |   |
|     | nozzles, used in sprayers – maintenance.                                        |   |
|     | Fertilizer distributors – rotating plate and flicker fertilizer unit – spinning | 7 |
|     | disc type – the spreader mechanism – rate of application of manure.             |   |
|     | Haymaking machinery – Forage harvester – The Buck rake.                         |   |
| V   | MAINTENANCE OF TRACTORS                                                         |   |
|     | Daily Maintenance of Tractors – Maintenance of Tractors on hour basis –         | 7 |
|     | Trouble shooting of Tractor engines, clutch, Gear box – Major overhaul of       |   |
|     | engines.                                                                        |   |
|     | Maintenance of the plough – routine maintenance of cultivating machinery        | 7 |
|     | – maintenance to grain drills – maintenance of fertilizer distributor –         |   |
|     | maintenance of farmyard manure spreaders.                                       |   |

#### **Reference Book**

- 1. Elements of Agricultural Engineering Jagdishwar Sahay.
- 2. Farm Tractor- Maintenance and Repair S.C.Jain, C.T.Raj, TATA MC Graw Hill.
- 3. Farm Machinery and Equipment Smith & Wilkey, Tata MC Graw Hill.
- 4. Farm Machinery– C.Culpin.
- Basic Farm Machinery, JM Shippen and JC Turner, Pergamon International Library.- Second edition

### Reference Web Link / Video

| Topic            | Website | Link                                           |
|------------------|---------|------------------------------------------------|
| Farm Machineries | NPTEL   | https://nptel.ac.in/courses/126/105/126105009/ |

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021533

Semester : V

Subject Title : Industrial Automation

#### **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject                  | Instructions |          | Examination |              |       |          |
|--------------------------|--------------|----------|-------------|--------------|-------|----------|
|                          | Hours /      | Hours /  |             | Marks        |       |          |
| 4021533                  | Week         | Semester | Internal    | Board        | Total | Duration |
| Industrial<br>Automation | VVCCR        | Comester | Assessment  | Examinations | Total |          |
| ratornation              | 5            | 80       | 25          | 100*         | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

#### **Topics and Allocation of Hours**

| UNIT | TOPIC                                      | TIME |
|------|--------------------------------------------|------|
| I    | Automation                                 | 15   |
| II   | Drive systems                              | 15   |
| III  | Robotics, Automated Inspection and Testing | 15   |
| IV   | Artificial Intelligence (AI), Industry 4.0 | 14   |
| V    | Rapid Prototyping (RP)                     | 14   |
|      | Test & Revision                            |      |
|      | Total                                      |      |

#### **RATIONALE**

Impart knowledge about the automation process in the automobile industries. To acquire knowledge about the hydraulic and pneumatic systems and its functions of the components. Understand the control methods of automation.

#### **OBJECTIVES**

- To learn the types of chassis and axles.
- To study about the steering system and its methods.
- To understand the suspension systems and its components.
- To learn the functions of universal joint and propeller shafts.
- To study working principle of differential unit.
- To learn about the types of brakes and tires.
- To know the function of clutch and gear box and its types

# 4021533 INDUSTRIALAUTOMATION DETAILED SYLLABUS

**Contents: Theory** 

| Unit | Name of the Topics                                                    | Hours |
|------|-----------------------------------------------------------------------|-------|
| I    | AUTOMATION                                                            |       |
|      | 1.1: Introduction to Automation                                       |       |
|      | Definition, automation principles and strategies - scope of           | 2     |
|      | automation - low cost automation - Production concepts and            |       |
|      | automation strategies.                                                |       |
|      | 1.2: Automation in Manufacturing Industries                           | 5     |
|      | Introduction - Automation in production system - Principles and       |       |
|      | strategies of automation - Basic elements of an automated system.     |       |
|      | Material handling and identification technologies: Overview of        |       |
|      | material handling systems - Types of material handling equipment -    |       |
|      | Conveyor system - Automated guided vehicle system - Automated         |       |
|      | storage systems – Description of Automatic Identification Methods.    |       |
|      | 1.3: Automation in Process Industries                                 | 4     |
|      | Introduction to computer based industrial automation - Direct Digital |       |

|    | Control (DDC) - Distributed Control System (DCS) - Supervisory         |   |
|----|------------------------------------------------------------------------|---|
|    | Control and Data Acquisition (SCADA) based architectures only.         |   |
|    | 1.4: Programmable Logic Controller (PLC)                               | 4 |
|    | Block diagram of PLC - Programming languages of PLC - Basic            |   |
|    | instruction sets - Levels of process safety through use of PLCs.       |   |
|    | Introduction to communication protocols - Profibus, Field bus,         |   |
|    | HART protocols.                                                        |   |
| II | DRIVE SYSTEMS                                                          |   |
| İ  | 2.1: Electrical Drives                                                 | 6 |
|    | Electric machines - Power converter - controllers - DC motor drives    |   |
|    | – braking. Sensing and feedback elements – current and speed           |   |
|    | loops, P, PI and PID controllers – response comparison. Induction      |   |
|    | motor drives – stator voltage control of induction motor – V/F         |   |
|    | control- Scalar and vector control of induction motor. Synchronous     |   |
|    | motor drives – principles of synchronous motor control - full and half |   |
|    | step motor drives, micro-stepping - Switched reluctance motor          |   |
|    | drive, Brushless DC motor drive- PMSM drives, BLDC drive.              |   |
|    | 2.2: Fluid power                                                       | 5 |
|    | Introduction – applications - advantages and limitations. Types of     |   |
|    | fluid power systems, Properties, Types of fluids – Fluid power         |   |
|    | symbols. Basics of hydraulics - Hydraulic system and components:       |   |
|    | Hydraulic Pumps – Classification - selection and design                |   |
|    | considerations. Fluid Power Actuators – Linear hydraulic actuators     |   |
|    | and types – Semi-rotary and rotary actuators.                          |   |
|    | 2.3: Pneumatic system and components                                   | 4 |
|    | Introduction to Pneumatics – Compressors – Types – Air treatment       |   |
|    | - FRL Unit - Air control valves, Quick exhaust valves, pneumatic       |   |
|    | actuators. Fluid power circuit design, Speed control circuits,         |   |
|    | synchronizing circuit, Pneumo-hydraulic circuit, Sequential circuit    |   |
|    | design. Servo systems – Hydro mechanical servo systems, Electro        |   |
|    | hydraulic servo systems and proportional valves. Fluid power           |   |
|    | system maintenance and troubleshooting: Fluidics – Introduction to     |   |
|    | fluidic devices. Fluid power circuits; failure and troubleshooting.    |   |
|    |                                                                        |   |

| III | ROBOTICS, AUTOMATED INSPECTION AND TESTING                              |   |
|-----|-------------------------------------------------------------------------|---|
|     | 3.1: Robotics                                                           | 8 |
|     | Robot anatomy - Position and orientation – Various joints - Degrees     |   |
|     | of freedom - Direct kinematics - Inverse kinematics - Linear and        |   |
|     | angular velocities - Manipulator - rotary joints — Inverse - Wrist and  |   |
|     | arm - Static analysis - Force and moment Balance - Trajectory           |   |
|     | planning, Pick and place operations, Continuous path motion,            |   |
|     | Interpolated motion, Straight line motion. Gripper force analysis and   |   |
|     | gripper design for typical applications, design of multiple degrees of  |   |
|     | freedom, active and passive grippers - Factors influencing the          |   |
|     | choice of a robot, robot performance testing- Impact of robot on        |   |
|     | industry and society                                                    |   |
|     | 3.2: Automated Inspection and Testing                                   | 7 |
|     | Automated Inspection - Principles and Methods - Sensor                  |   |
|     | Technologies for Automated Inspection - Coordinate Measuring            |   |
|     | Machines - Machine Vision - optical Inspection Methods. Robotic         |   |
|     | vision systems - image representation - object recognition and          |   |
|     | categorization- depth measurement - image data compression -            |   |
|     | visual inspection.                                                      |   |
| IV  | ARTIFICIAL INTELLIGENCE (AI), INDUSTRY 4.0                              |   |
|     | 4.1: Artificial Intelligence (AI):                                      | 7 |
|     | Introduction - History of Al. Intelligent agents: Agents and            |   |
|     | Environment - Reactive agent – deliberative - goal-driven, utility-     |   |
|     | driven, and learning agents. Artificial Intelligence programming        |   |
|     | techniques. Introduction to ML and DL Concepts                          |   |
|     | Expert systems: - Architecture of expert systems - Roles of expert      |   |
|     | systems – Knowledge Acquisition – Meta knowledge, Heuristics.           |   |
|     | Typical expert systems – MYCIN, DART, XOON. Al applications in          |   |
|     | Industry Automation using - natural language processing - computer      |   |
|     | vision - speech recognition. Description only.                          |   |
|     | 4.2: Industry 4.0                                                       | 7 |
|     | Introduction - The Various Industrial Revolutions. Challenges for       |   |
|     | Industry 4.0 - Internet of Things (IoT) - Industrial Internet of Things |   |

|   | (IIoT). Smart Manufacturing - Smart Devices and Products - Smart      |   |
|---|-----------------------------------------------------------------------|---|
|   | Logistics - Smart Cities. Technologies for enabling Industry 4.0 -    |   |
|   | Cyber Physical Systems - Robotic Automation - Collaborative           |   |
|   | Robots - Support System for Industry 4.0 - Mobile Computing -         |   |
|   | Cyber Security. (Description only)                                    |   |
| V | RAPID PROTOTYPING (RP)                                                |   |
|   | Introduction - History of Rapid Prototyping (RP) systems - Growth of  | 4 |
|   | RP industry - Classification of RP systems. 3D printing technologies  |   |
|   | - selection of material and equipment - 3D printing in Industry 4.0   |   |
|   | environment.                                                          |   |
|   | RP processes: Stereo lithography, Laser Sintering, Fused              | 6 |
|   | Deposition Modeling, Laminated Object Manufacturing, Solid            |   |
|   | Ground Curing – working principle. Rapid Tooling: Indirect rapid      |   |
|   | tooling - Direct rapid tooling - soft tooling Vs hard tooling. Rapid  |   |
|   | Manufacturing Process Optimization- Factors influencing accuracy      |   |
|   | and errors. Software for RP - STL files - internet based software,    |   |
|   | collaboration tools.                                                  |   |
|   | Augmented reality and virtual reality - The historical development of | 4 |
|   | AR and Virtual Reality - Requirements for AR and VR - Benefits of     |   |
|   | AR and VR.                                                            |   |

#### **Reference Books**

- 1. Pneumatic Systems Principles and Maintenance S.R. Majumdar Tata McGraw Hill Pub co
- 2. Introduction to Programmable Logic Controllers, Gary Dunning Thomson Delmar Learning
- 3. Fluid Power by Harry L. Stewart Audel Series
- 4. Hydraulics & Pneumatics Power for production Harry L Stewart Industrial Press Inc, New York
- 5. Pneumatic circuit by Harry L. Stewart Audel Series
- 6. Fundamentals of pneumatic control Engg Text book By Festo
- 7. Introduction to Pneumatics Test Book by Festo

### Reference Web Link / Video

| Topic                             | Website | Link                                           |
|-----------------------------------|---------|------------------------------------------------|
| Industrial automation and control | NPTEL   | https://nptel.ac.in/courses/108/105/108105088/ |
|                                   |         |                                                |

#### **N-SCHEME**

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code: 4021540

Semester : V

Subject Title : Automobile Servicing Practical

#### **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject                            | Instructions    |                     |                        | Examination                    | 1     |          |
|------------------------------------|-----------------|---------------------|------------------------|--------------------------------|-------|----------|
| 4021540<br>Automobile<br>Servicing | Hours /<br>Week | Hours /<br>Semester | Internal<br>Assessment | Marks<br>Board<br>Examinations | Total | Duration |
| Practical                          | 4               | 64                  | 25                     | 100*                           | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

#### **OBJECTIVES:**

- Identify the analyse faults in a vehicle as per the service manual.
- Learn the procedure for servicing of various components of the car.
- Illustrate the complete methodology of evaluation and maintenance of automobile.
- Perform dismantling and assembling of automobile components using tools.
- Enumerate the importance of maintenance and also the step by step procedure for maintaining the various automotive systems.

#### 4021540 AUTOMOBILE SERVICING PRACTICAL

#### Exercises

1. Check and identify the status of the following as per the preventive maintenance procedure under the hood as per the service manual of a car.

Check the air filter, Check the accessory belts, Check the radiator, Check the hoses, Check the fluid levels and Check the windshield wipers.

2. Check and identify the status of the following as per the maintenance procedure of a vehicle cooling system.

Look at radiators, analyse about antifreeze / coolant, Review radiator pressure caps, Shoot the breeze about fan, understand water pumps, study about thermostats, Explore heater cores

3. Check and identify the status of the following as per drive train of a car.

How power flows through drive train, Manual transmission, Automatic transmission, Trouble shooting, Maintenance of the drive train, Common transmission repairs

4. Check and identify the status of the following as per the manual of a vehicle in the brake system.

Check the brake system, check fluid level and leaks, change the fluid, Bleeding procedure, adjust parking brake, check the antilock braking system (ABS).

5. Check and identify the status of the following as per the manual of a vehicle in the steering and suspension systems

Understand the steering system and suspension systems

6. Check and identify the status of the spark plug.

Remove the spark plug, Inspect the spark plug, Measure and re-gape the spark plug, Install the spark plug, Check distributor, dwell meters, timing light.

7. Check and identify the status of the Fuel system.

Check and replace fuel and air filter, check your fuel pump, PCV valve and accelerator pump, adjust idle speed, idle mixture and choke, Install carburetor.

#### 8. Check and identify the status of the engine oil.

Oil grade and additives requirement, how often to change, change the oil and oil filter, recycle the oil and filter

#### 9. Check and identify the status of the lubrication oil.

Study the lube oils, need of lube oil, lubricate steering linkage, lubricate suspension system.

#### 10. Check and identify the status of the tires.

Understand the anatomy of a tire, Deciphering tire codes, choose right tire, check for wear. Maintenance of the tire – air pressure, rotate, align and balance.

#### 11. Check and identify for the heart burn issues in car.

Check and add coolant, remove radiator cap, determine the coolant needs to be flushed or changed, flush and change the coolant, find leaks and repair, replace hoses and hose clamps, replace water pumps, adjust / replace the accessory belt, replace a thermostat.

- 12. Check, measure and adjust the caster, chamfer, king pin inclination, toe-in and toe- out of a car using Wheel alignment.
- 13. Remove the wheel from the vehicle and balance the wheel using wheel balancing machine.

#### **BOARD EXAMINATION**

#### Note:

- All the exercises should be completed before the Board Examinations. Any one exercise will be given for examination.
- All the exercises should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

#### **DETAILLED ALLOCATION OF MARKS**

| SI. No. | Description                                     | Max. Marks |
|---------|-------------------------------------------------|------------|
| 1       | Procedure/Explanation                           | 20         |
| 2       | Tools and its handling methods                  | 15         |
| 3       | Observation reports                             | 25         |
| 4       | Service / Maintenance and troubleshooting steps | 25         |
| 5       | Result                                          | 5          |
| 6       | Viva-voce                                       | 10         |
|         | Total                                           | 100        |

## LIST OF EQUIPMENT / TOOLS/MACHINERY'S REQUIRED

## (for a batch of 30 students)

| SI. No. | Machinery's / Equipment / Tools | Quantity            |
|---------|---------------------------------|---------------------|
| 1       | LMV                             | 02                  |
| 2       | Drive train system              | 01                  |
| 3       | Brake system                    | 01                  |
| 4       | Steering system                 | 01                  |
| 5       | Suspension system               | 01                  |
| 6       | Fuel system                     | 01                  |
| 7       | Coolant system                  | 01                  |
| 8       | Tires                           | 01                  |
| 9       | Wheel balancer                  | 01                  |
| 10      | Wheel aligner                   | 01                  |
| 11      | Vehicle lift                    | 01                  |
| 12      | Hydraulic press                 | 01                  |
| 13      | Transmission jack               | 01                  |
| 14      | Jack and Jack stand             | 01                  |
| 15      | Service manuals                 | Sufficient quantity |
| 16      | Automobile Shop floor tools     | Sufficient quantity |
| 17      | Tool box                        | Sufficient quantity |

## Blank Page

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021550

Semester : V

Subject Title : Engine Testing and Emission Measurement Practical

#### TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

| Subject                     | Instructions |          |                        | Examination           | 1     |          |
|-----------------------------|--------------|----------|------------------------|-----------------------|-------|----------|
| 4021550                     | Hours /      | Hours /  |                        | Marks                 |       |          |
| Engine Testing and Emission | Week         | Semester | Internal<br>Assessment | Board<br>Examinations | Total | Duration |
| Measurement<br>Practical    | 4            | 64       | 25                     | 100*                  | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

#### Rationale:

This subject will enable the students in determining the performance of petrol and diesel engine at various loading condition and also understanding the procedure of Emission Measurement in diesel and petrol engine.

#### **Objectives:**

At the end of the course, the students will be able

- To conduct the performance test of petrol and diesel engines and draw the performance curve
- To analyze the emission gases from petrol and diesel
- To prepare a heat balance sheet petrol or diesel engines
- To prepare Morse test on a petrol or diesel engines
- To conduct the bomb calorimeter experiment and find the calorific value of the diesel
- To find the intensity of smoke from a diesel engine

#### 4021550 ENGINE TESTING AND EMISSION MEASUREMENT PRACTICAL

#### **Experiments**

- 1. Conduct the variable speed performance test of a single cylinder petrol engine and draw the curve. 1. BHP, IHP, FHP Vs Speed 2. Volumetric efficiency, SFC Vs Speed.
- 2. Conduct the constant speed performance test of a single cylinder diesel engine and draw the curve. 1. BHP, IHP, FHP Vs Speed 2. Volumetric efficiency, SFC Vs Speed.
- 3. Find the Indicated Horse Power of a multi cylinder engine by Morse test.
- 4. Prepare the heat balance sheet on single cylinder petrol / diesel engine.
- 5. Prepare the heat balance sheet on multi cylinder petrol / diesel engine.
- 6. Analysis of exhaust gases from engine by Orsat apparatus.
- 7. Find the intensity of smoke from a diesel engine using smoke meter.
- 8. Measure the emissions in exhaust of an engine by exhaust gas analyser.
- 9. Find the Calorific Value of diesel using Bomb calorimeter.

#### Reference Web Link / Video

| Topic      | Website      | Link                                  |
|------------|--------------|---------------------------------------|
| Automotive | Virtual Labs | http://vlabs.iitkgp.ernet.in/rtvlas/# |
| Systems    | Viitual Labs | Tittp://viabs.iittgp.emet.ii/itvias/# |

#### **BOARD EXAMINATION**

#### Note:

- All the experiments should be completed before the Board Examinations. Any one
  experiment will be given for examination.
- All the experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

#### **DETAILLED ALLOCATION OF MARKS**

| SI. No. | Description                  | Max. Marks |
|---------|------------------------------|------------|
| 1       | Procedure                    | 15         |
| 2       | Observation / Tabular column | 20         |
| 3       | Formulae                     | 15         |
| 4       | Calculations                 | 35         |
| 5       | Result / Graph               | 5          |
| 6       | Viva-voce                    | 10         |
|         | Total                        | 100        |

### LIST OF TOOLS / EQUIPMENTS/ MACHINERY'S

## (for a batch of 30 students)

| SI. No. | Machinery's / Equipment / Tools                          | Quantity   |
|---------|----------------------------------------------------------|------------|
| 1       | Single cylinder petrol engine with following arrangement | 01         |
|         | 1.Load test arrangement                                  |            |
|         | 2. Heat balance test arrangement                         |            |
| 2       | Single cylinder diesel engine with following arrangement | 01         |
|         | 1.Load test arrangement                                  |            |
|         | 2. Heat balance test arrangement                         |            |
| 3       | Multi cylinder petrol / diesel engine with following     | 01         |
|         | arrangement                                              |            |
|         | 1.Morse test arrangement                                 |            |
|         | 2. Heat balance test arrangement                         |            |
| 4       | Orsat apparatus                                          | 01         |
| 5       | Smoke meter                                              | 01         |
| 6       | Exhaust gas analyser                                     | 01         |
| 7       | Bomb calorimeter with all accessories                    | 01         |
| 8       | Consumables                                              | Sufficient |
|         |                                                          | quantity   |
| 9       | Measuring Instruments                                    | Sufficient |
|         |                                                          | quantity   |
| 10      | Safety devices (PPE kit, Fire Protecting Equipment etc)  | Sufficient |
|         |                                                          | quantity   |

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021561

Semester : V

Subject Title : Two-Wheeler and Three-Wheeler Technology Practical

#### TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

| Subject Instructions                 |                 |                     |                        | Examination              | 1     |          |
|--------------------------------------|-----------------|---------------------|------------------------|--------------------------|-------|----------|
| 4021561<br>Two-Wheeler<br>and Three- | Hours /<br>Week | Hours /<br>Semester | Internal<br>Assessment | Marks Board Examinations | Total | Duration |
| Wheeler<br>Technology<br>Practical   | 4               | 64                  | 25                     | 100*                     | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

#### **Objectives:**

At the end of the course, the students will be able

- To demonstrate the various components of two and three wheelers by dismantling and reassemble the same
- To inspect the cooling system, lubrication system and fuel supply system after dismantling and assembling
- To dismantle, Inspect, overhaul and assemble the transmission system.
- To dismantle, Inspect, overhaul and assemble the final drive unit.
- To Inspect the front and rear suspension system after dismantling and assembling

#### 4021561 TWO WHEELER AND THREE WHEELER TECHNOLOGY PRACTICAL

#### **EXERCISES**

- 1. Dismantle, check and assemble the engine cooling system of Two and Three wheeler.
- 2. Check the engine oil level and replace the oil in Two and Three wheeler.
- 3. Dismantle and assemble the clutch used in Two and Three wheeler.
- 4. Adjust the clutch free play, throttle cable and inspect the common troubles and causes in Two and Three wheeler.
- 5. Overhaul and lubricate the gear box of Two and Three wheeler.
- 6. Dismantle, lubricate and assemble the propeller shaft and differential
- 7. Dismantle, lubricate and assemble the rear axle of the three wheeler
- 8. Check frame alignment, dismantle and assemble the leaf spring assembly
- 9. Dismantle and assemble the front suspension and rear suspension of two wheeler
- 10. Remove the tire, lubricate bearings, refit and adjust the chain of two wheeler
- Dismantle, Service and assemble the disc brake system Master cylinder, Wheel
   Cylinder, Caliper and brake pad of two wheeler

# **BOARD EXAMINATION**

# Note:

- All the exercises should be completed before the Board Examinations. Any one exercise will be given for examination.
- All the exercises should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

# **DETAILLED ALLOCATION OF MARKS**

| SI. No. | Description                                | Max. Marks |  |  |
|---------|--------------------------------------------|------------|--|--|
| 1       | Procedure/Explanation                      | 20         |  |  |
| 2       | Tools handling procedure                   | 20         |  |  |
| 3       | Dismantling and identifying the components | 25         |  |  |
| 4       | Assembly                                   | 25         |  |  |
| 5       | Viva-voce                                  | 10         |  |  |
|         | Total                                      |            |  |  |

# LIST OF TOOLS / EQUIPMENTS / MACHINERY'S

(for a batch of 30 students)

| SI. No. | Machinery's / Equipment / Tools | Quantity            |
|---------|---------------------------------|---------------------|
| 1       | Two Wheeler                     | 2                   |
| 2       | Three Wheeler                   | 1                   |
| 3       | Special tools                   | 5 sets              |
| 4       | Shop Floor Tools                | 3 sets              |
| 5       | Two Wheeler engine              | 1                   |
| 6       | Three Wheeler Engine            | 1                   |
| 7       | Spare components                | Sufficient quantity |

# Blank Page

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021562

Semester : V

Subject Title : Tractor and Farm Equipment Practical

# **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject                | Instructions |          |                        | Examination           | 1     |          |
|------------------------|--------------|----------|------------------------|-----------------------|-------|----------|
| 4021562                | Hours /      | Hours /  |                        | Marks                 |       |          |
| Tractor and Farm       | Week         | Semester | Internal<br>Assessment | Board<br>Examinations | Total | Duration |
| Equipment<br>Practical | 4            | 64       | 25                     | 100*                  | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

# **Objectives:**

- To learn and practice to operate tractor.
- To understand and practice the ploughing.
- To study and practice with the implements used for farming.
- To know the different types of sprayers used fertilizer.
- To understand and maintain the tractor.

#### 4021562 TRACTOR AND FARM EQUIPMENTPRACTICAL

# **List of Experiments**

- 1. Driving the Tractor- Driving Practice only.
- 2. Hitching the given implement with the tractor by three point linkage and unhitching practice.
- 3. Ploughing practice with Mould Board Plough.
- 4. Ploughing practice with DISC harrows.
- 5. Ploughing practice with Tiller.
- 6. Power Tiller- study, its usage in the field and maintenance.
- 7. Cage wheel– fitting the cage wheel after removing the wheels from Tractor.
- 8. Spraying practice with power sprayer and its maintenance.
- 9. Tractor maintenance Schedule.

# **BOARD EXAMINATION**

#### Note:

- All the exercises should be completed before the Board Examinations. Any one exercise will be given for examination.
- All the exercises should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

# **DETAILLED ALLOCATION OF MARKS**

| SI. No. | Description                 | Max.Marks |
|---------|-----------------------------|-----------|
| 1       | Procedure / Explanation     | 20        |
| 2       | Tool Handling / Dismantling | 40        |
| 3       | Observation / Refitting     | 30        |
| 4       | Viva voce                   | 10        |
|         | Total                       | 100       |

# LIST OF TOOLS / EQUIPMENTS / MACHINERY'S

# (for a batch of 30 students)

| SI. No. | Machinery's / Equipment / Tools | Quantity            |
|---------|---------------------------------|---------------------|
| 1       | Tractor                         | 1                   |
| 2       | Power triller                   | 1                   |
| 3       | Ploughing implements kits       | 1 set               |
| 4       | Power sprayer                   | 1                   |
| 5       | Special tools                   | 5 set               |
| 6       | Spanners and Tools              | Sufficient quantity |

# Blank Page

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021563

Semester : V

Subject Title : Industrial Automation Practical

# **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject    | Instructions |           |            | Examination  | 1     |          |
|------------|--------------|-----------|------------|--------------|-------|----------|
| 4021563    | Hours /      | Hours /   |            | Marks        |       |          |
| Industrial | Week         | Semester  | Internal   | Board        | Total | Duration |
| Automation | VVCCK        | Jennester | Assessment | Examinations | IOtai |          |
| Practical  | 4            | 64        | 25         | 100*         | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

# **Objectives:**

- Impart knowledge in industrial automation
- Exposure to different PLC programming languages
- Able to provide adequate knowledge in SCADA and DCS
- Study of HART and Field bus protocol.
- Impart knowledge on Robot programming and Robot operation control
- Expose students to SCADA and various data communication protocols
- Learn IOT, 3D Printing

### **4021563 INDUSTRIAL AUTOMATION PRACTICAL**

# **Experiments**

# PART A

- 1. Study of HART and Field bus protocol
- 2. Study of Distributed Control System and different instruction sets.
- 3. Study the simulation of movements in HMI and SCADA (using Analog data)
- 4. Trouble Shooting the Sensor and Actuator using Multistation MPS.
- 5. Study the operator control of Robot and jog the Robot
- 6. Application and case studies related to manufacturing industries
- 7. Application and case studies related to process industries.

# PART B

- 1. Design and development of IoT based transmitter
- 2. Development of Ladder logic programme for control of real time processes.
- 3. Development of SCADA for a control of real time processes.
- 4. Robot Programming: "In-air" program (Point to Point motion)
- 5. Actuation of Pneumatic circuit for Rotary Pusher Module and interface with Programmable Logic Control
- 6. Actuation of Single Acting Cylinder using a two-way Pressure Valve using Flow Control Valve.
- 7. Design and print a model using 3D printer.

# **BOARD EXAMINATION**

# Note:

- All the exercises/experiments in both sections should be completed. Two
  exercises/experiments will be given for examination by selecting one from PART A
  and one from PART B.
- All the exercises/experiments should be given in the question paper and students
  are allowed to select by a lot or Question paper issued from the DOTE should be
  followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machineries / equipment before commencement of the board practical examination.

# **DETAILLED ALLOCATION OF MARKS**

| SI. No. | Description             | Max. Marks |  |  |  |  |
|---------|-------------------------|------------|--|--|--|--|
|         | PART - A                |            |  |  |  |  |
| 1       | Procedure / Explanation | 30         |  |  |  |  |
|         | PART - B                |            |  |  |  |  |
| 2       | Procedure               | 15         |  |  |  |  |
| 3       | Circuit / Layout        | 20         |  |  |  |  |
| 4       | Programming / Execution | 20         |  |  |  |  |
| 5       | Result                  | 05         |  |  |  |  |
| 6       | Viva voce               | 10         |  |  |  |  |
|         | Total                   | 100        |  |  |  |  |

# LIST OF TOOLS / EQUIPMENTS / MACHINERY'S

# (for a batch of 30 students)

| SI. No. | Machinery's / Equipment / Tools                   | Quantity            |
|---------|---------------------------------------------------|---------------------|
| 1       | Robot kit                                         | 1                   |
| 2       | 3D printer                                        | 1                   |
| 3       | PLC Kit                                           | 1                   |
| 4       | Pneumatic kit                                     | 1                   |
| 5       | SCADA Software                                    | Sufficient quantity |
| 6       | IOT Components                                    | 1                   |
| 7       | Consumables                                       | Sufficient quantity |
| 8       | Kits/components required for the study experiment | -                   |

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4020570

Semester : V

Subject Title : Entrepreneurship & Startups

# **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject          | Instructions |          |                        | Examination           | 1     |          |
|------------------|--------------|----------|------------------------|-----------------------|-------|----------|
| 4020570          | Hours /      | Hours /  |                        | Marks                 |       |          |
| Entrepreneurship | Week         | Semester | Internal<br>Assessment | Board<br>Examinations | Total | Duration |
| & Startups       | 4            | 64       | 25                     | 100*                  | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

# Topics and Allocation of Hours

| UNIT | Topic                                            | Hours |
|------|--------------------------------------------------|-------|
| 1    | Entrepreneurship – Introduction and Process      | 10    |
| 2    | Business Idea and Banking                        | 10    |
| 3    | Start ups, E-cell and Success Stories            | 10    |
| 4    | Pricing and Cost Analysis                        | 10    |
| 5    | Business Plan Preparation                        | 10    |
|      | Field visit and Preparation of case study report | 14    |
|      | Total                                            | 64    |

#### **RATIONALE:**

Development of a diploma curriculum is a dynamic process responsive to the society and reflecting the needs and aspiration of its learners. Fast changing society deserves changes in educational curriculum particularly to establish relevance to emerging socioeconomic environments; to ensure equity of opportunity and participation and finally promoting concern for excellence. In this context the course on entrepreneurship and start ups aims at instilling and stimulating human urge for excellence by realizing individual potential for generating and putting to use the inputs, relevant to social prosperity and thereby ensure good means of living for every individual, provides jobs and develop Indian economy.

#### **OBJECTIVES:**

At the end of the study of 5<sup>th</sup> semester the students will be able to

- o To excite the students about entrepreneurship
- Acquiring Entrepreneurial spirit and resourcefulness
- Understanding the concept and process of entrepreneurship
- Acquiring entrepreneurial quality, competency and motivation
- Learning the process and skills of creation and management of entrepreneurial venture
- Familiarization with various uses of human resource for earning dignified means of living
- Know its contribution in and role in the growth and development of individual and the nation
- Understand the formation of E-cell
- Survey and analyze the market to understand customer needs
- Understand the importance of generation of ideas and product selection
- Learn the preparation of project feasibility report
- Understand the importance of sales and turnover
- o Familiarization of various financial and non financial schemes
- Aware the concept of incubation and starts ups

# **DETAILED SYLLABUS**

| Unit | Name of the Topics                                            | Hours |
|------|---------------------------------------------------------------|-------|
| 1    | ENTREPRENEURSHIP – INTRODUCTION AND PROCESS                   | 10    |
|      | Concept, Functions and Importance                             |       |
|      | Myths about Entrepreneurship                                  |       |
|      | Pros and Cons of Entrepreneurship                             |       |
|      | Process of Entrepreneurship                                   |       |
|      | Benefits of Entrepreneur                                      |       |
|      | Competencies and Characteristics                              |       |
|      | Ethical Entrepreneurship                                      |       |
|      | Entrepreneurial Values and Attitudes                          |       |
|      | Motivation                                                    |       |
|      | Creativity                                                    |       |
|      | Innovation                                                    |       |
|      | Entrepreneurs - as problem solvers                            |       |
|      | Mindset of an employee and an entrepreneur                    |       |
|      | Business Failure – causes and remedies                        |       |
|      | Role of Networking in entrepreneurship                        |       |
| 2    | BUSINESS IDEA AND BANKING                                     | 10    |
|      | Types of Business: Manufacturing, Trading and Services        |       |
|      | Stakeholders: Sellers, Vendors and Consumers                  |       |
|      | E- Commerce Business Models                                   |       |
|      | Types of Resources - Human, Capital and Entrepreneurial       |       |
|      | tools                                                         |       |
|      | Goals of Business and Goal Setting                            |       |
|      | Patent, copyright and Intellectual Property Rights            |       |
|      | Negotiations - Importance and methods                         |       |
|      | Customer Relations and Vendor Management                      |       |
|      | Size and Capital based classification of business enterprises |       |
|      | Role of Financial Institutions                                |       |

|   | Role of Government policy                                     |    |
|---|---------------------------------------------------------------|----|
|   | Entrepreneurial support systems                               |    |
|   | Incentive schemes for State Government                        |    |
|   | Incentive schemes for Central Government                      |    |
| 3 | STARTUPS, E-CELL AND SUCCESS STORIES                          | 10 |
|   | Concept of Incubation centre's                                |    |
|   | Activities of DIC, financial institutions and other relevance |    |
|   | institutions                                                  |    |
|   | Success stories of Indian and global business legends         |    |
|   | Field Visit to MSME's                                         |    |
|   | Various sources of Information                                |    |
|   | Learn to earn                                                 |    |
|   | Startup and its stages                                        |    |
|   | Role of Technology – E-commerce and Social Media              |    |
|   | Role of E-Cell                                                |    |
|   | E-Cell to Entrepreneurship                                    |    |
| 4 | PRICING AND COST ANALYSIS                                     | 10 |
|   | Calculation of Unit of Sale, Unit Price and Unit Cost         |    |
|   | Types of Costs - Variable and Fixed, Operational Costs        |    |
|   | Break Even Analysis                                           |    |
|   | Understand the meaning and concept of the term Cash           |    |
|   | Inflow and Cash Outflow                                       |    |
|   | Prepare a Cash Flow Projection                                |    |
|   | Pricing and Factors affecting pricing                         |    |
|   | Understand the importance and preparation of Income           |    |
|   | Statement                                                     |    |
|   | Launch Strategies after pricing and proof of concept          |    |
|   | Branding - Business name, logo, tag line                      |    |
|   | Promotion strategy                                            |    |
| 5 | BUSINESS PLAN PREPARATION                                     | 10 |
|   | Generation of Ideas,                                          |    |
|   | - Contration of Idodo,                                        |    |

- Business Ideas vs. Business Opportunities
- Selecting the Right Opportunity
- Product selection
- New product development and analysis
- Feasibility Study Report Technical analysis, financial analysis and commercial analysis
- Market Research Concept, Importance and Process
- Marketing and Sales strategy
- Digital marketing
- Social Entrepreneurship
- Risk Taking-Concept
- Types of business risks

# **REFERNCE BOOKS:**

- Dr. G.K. Varshney, Fundamentals of Entrepreneurship, Sahitya Bhawan Publications, Agra - 282002
- Dr. G.K. Varshney, Business Regulatory Framework , Sahitya Bhawan Publications, Agra - 282002
- 3. Robert D. Hisrich, Michael P. Peters, Dean A. Shepherd, Entrepreneurship, McGraw Hill (India) Private Limited, Noida 201301
- 4. M.Scarborough, R.Cornwell, Essentials of Entrepreneurship and small business management, Pearson Education India, Noida 201301
- 5. Charantimath Poornima M. Entrepreneurship Development and Small Business Enterprises, Pearson Education, Noida 201301
- Trott, Innovation Management and New Product Development, Pearson Education,
   Noida 201301
- 7. M N Arora, A Textbook of Cost and Management Accounting, Vikas Publishing House Pvt. Ltd., New Delhi-110044
- 8. Prasanna Chandra, Financial Management, Tata McGraw Hill education private limited, New Delhi
- 9. I. V. Trivedi, Renu Jatana, Indian Banking System, RBSA Publishers, Rajasthan
- 10. Simon Daniel, HOW TO START A BUSINESS IN INDIA, BUUKS, Chennai 600018

11. Ramani Sarada, The Business Plan Write-Up Simplified - A practitioners guide to writing the Business Plan, Notion Press Media Pvt. Ltd., Chennai 600095.

# **Board Examination – Evaluation Pattern**

# **Internal Mark Allocation**

| Total                        | - | 25 |
|------------------------------|---|----|
| Attendance                   | - | 5  |
| Seminar Presentation         | - | 10 |
| Assignment (Theory portion)* | - | 10 |

Note: \* Two assignments should be submitted. The same must be evaluated and converted to 10 marks.

# **Guidelines for assignment:**

First assignment - Unit I

Second assignment – Unit II

Guidelines for Seminar Presentation - Unit III

Each assignment should have five three marks questions and two five marks questions.

#### **BOARD EXAMINATION**

#### Note

- 1. The students should be taught all units and proper exposure and field visit also arranged. All the portions should be completed before examinations.
- The students should maintain theory assignment and seminar presentation.
   The assignment and seminar presentation should be submitted during the Board Practical Examinations.
- 3. The question paper consists of theory and practical portions. All students should write the answers for theory questions (45 Marks) and practical portions (55 Marks) should be completed for board examinations.
- 4. All exercises should be given in the question paper and students are allowed

- to select by lot. If required the dimensions of the exercises may be varied for every batch. No fixed time allotted for each portion and students have liberty to do the examination for 3Hrs.
- For Written Examination: theory question and answer: 45 Marks
   Ten questions will be asked for 3 marks each. Five questions from each unit
   1 & 2. (10 X 3 = 30).
  - Three questions will be asked for 5 marks each. One question from each unit 1, 2 & 3.  $(3 \times 5 = 15)$
- 6. For Practical Examination: The business plan/Feasibility report or Report on Unit 4 & 5 should be submitted during the board practical examinations. The same have to be evaluated for the report submission (40 marks).

# **DETAILED ALLOCATION OF MARKS**

| SI.    | Description                                      | Marks |
|--------|--------------------------------------------------|-------|
| No     |                                                  |       |
| Part A | Written Examination - Theory Question and answer | 45    |
|        | 10 questions x 3 marks = 30 marks                |       |
|        | 3 questions x 5 marks = 15 marks                 |       |
| Part B | Practical Examination – Submission on Business   | 40    |
|        | Plan/Feasibility Report or Report on Unit 4 & 5  |       |
| Part C | Viva voce                                        | 15    |
|        | Total                                            | 100   |

# Blank Page

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021610

Semester : VI

Subject Title : Hybrid Electrical Vehicle and Policies

# **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject              | Instr   | uctions            | Examination |              |       |          |
|----------------------|---------|--------------------|-------------|--------------|-------|----------|
| 4021610              | Hours / | Hours /            |             | Marks        |       |          |
| Hybrid               | Week    | Semester           | Internal    | Board        | Total | Duration |
| Electrical           | Week    | al   Total   Total | Assessment  | Examinations | IOlai |          |
| Vehicle and Policies | 6       | 96                 | 25          | 100*         | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

# **Topics and Allocation of Hours**

| UNIT | TOPIC                                                                          | TIME |
|------|--------------------------------------------------------------------------------|------|
| I    | Environmental impact and history & Electric vehicle Types                      | 18   |
| II   | Battery Operated Electric Vehicle                                              | 18   |
| III  | Hybrid Electric Vehicle                                                        | 18   |
| IV   | Battery System & Power Converters for EV's                                     | 18   |
| V    | Electric Mobility Policy Frame work India &Tamil Nadu<br>E-vehicle Policy 2019 | 17   |
|      | Test & Revision                                                                |      |
|      | Total                                                                          | 96   |

#### RATIONALE:

The world is transitioning to cleaner mobility options with the aim at improving air quality and reducing dependency on fossil fuels. Electric Vehicles (EVs) have emerged a popular clean mobility choice to reduce emissions. EVs are powered fully or partially by batteries, they can help to reduce dependence on fossil fuels also air quality. Tamil Nadu is one of the most advanced states in India. Tamil Nadu has a highly developed industrial eco-system and is very strong in sectors like automobiles and autocomponents. Many globally renowned companies have setup their manufacturing facilities in Tamil Nadu. Due the rapid depletion of fossil fuel and increase in fuel cost, environmental pollution, the shift to clean transport is necessary. This subject introduced by keeping all the above factors.

# **OBJECTIVES:**

- To learn the environmental impact and history of Electric Vehicles.
- To understand the concept of Electric Vehicle and its types.
- To study the configurations of Electric Vehicles
- To acquire knowledge about Energy Storages, Charging System, Effects and Impacts.
- To appreciate the Electric Mobility Policy Frame work India and EV Policy Tamil Nadu 2019.

# 4021610 HYBRID ELECTRICAL VEHICLE AND POLICIES DETAILED SYLLABUS

Contents: Theory

| Unit | Name of the Topics                                                                                                                                                                                                                                                                                               | Hours |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| I    | ENVIRONMENTAL IMPACT AND HISTORY & ELECTRIC VEHICLE TYPES  Environmental impact and history: Environmental impact of conventional vehicle - Air pollution – Petroleum resources – History of Electric vehicles & Hybrid Electric Vehicles – Need for Electric Vehicle – Major Components of Electric Vehicle     | 6     |
|      | Electric vehicle Types: Introduction to Battery Electric Vehicle (BEV) – Definition BEV – Necessity BEV – Different between BEV and Conventional Vehicle - Advantages of BEV - Block diagram of BEV – Hybrid electric Vehicle (HEV) - Plug-in Hybrid Electric Vehicle (PHEV) – Fuel Cell Electric Vehicle (FCEV) | 7     |
|      | Drive Arrangement: According to drive arrangement Types – Conventional type – No Transmission type – No differential type – In Wheel Motor type                                                                                                                                                                  | 5     |
| II   | BATTERY OPERATED ELECTRIC VEHICLE (BEV)  BEV: Configurations of Electric Vehicle – Performance of Electric Vehicles – Tractive Effort in Normal Driving – energy consumption.                                                                                                                                    | 4     |
|      | Electric Propulsion Systems: Types of EV motors - DC motor drives - Permanent Magnetic Brush Less DC Motor Drives (BLDC) - Principles, Construction and Working - Hub motor Drive system - Merits and Demerits of DC motor drive, BLDC motor drive                                                               | 7     |
|      | Other Control System for EV: Electronics Power Steering – Torque Sensor – EPS Motor – Advantages of Electronics Power Steering – Suspension System – Semi Tailing arm type, Trailing arm, Air Suspension, Regenerative Suspension System – Braking System for EV                                                 | 7     |

|     | HYBRID ELECTRIC VEHICLE (HEV)                                                                                                                                                                                                                                                                                 |   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| III | HEV: Hybrid Electric Vehicle – Advantages, Disadvantages – Components of Hybrid Electric Vehicle – IC Engine, Electric Motor, Controller, DC/DC Converter, Transmission, Batteries – Working of Hybrid Vehicle – Starting, Braking, Cruising, Passing.                                                        | 7 |
|     | Types of Hybrid Vehicle: Hybridisation – Micro Hybrid, Mild Hybrid, Fully Hybrid – Advantages, Disadvantages & its Applications                                                                                                                                                                               | 3 |
|     | Drive Configuration: Series Hybrid – Control Strategies, Advantages & Disadvantages, Configuration - Parallel Hybrid – Electric motor fixed with an Electric motor to the crankshaft, Control Strategies, Advantages & Disadvantages, Configuration – Split Power Hybrid                                      | 8 |
| IV  | BATTERY SYSTEM & POWER CONVERTERS FOR EV'S                                                                                                                                                                                                                                                                    |   |
|     | Battery: Electrochemical Batteries – Battery Technologies – Construction and working of Lead Acid Batteries, Nickel Based Batteries and Lithium Based Batteries - Role of Battery Management System (BMS) – Battery pack development Technology – Cell Series and Parallel connection to develop battery pack | 7 |
|     | Battery Charging Techniques: Battery Charging techniques - Constant current and Constant voltage, Trickle charging - Battery Swapping Techniques - DC charging - Wireless charging - Maintenance of Battery pack - Latest development in battery chemistry                                                    | 6 |
|     | Power Converters: Role of Power Converters – Block diagram of Power Converters in EV – Types of Power Converters – DC to DC Converter, Inverter and Rectifier                                                                                                                                                 | 5 |
| V   | ELECTRIC MOBILITY POLICY FRAME WORK INDIA &TAMIL NADU E-VEHICLE POLICY 2019                                                                                                                                                                                                                                   |   |
|     | Electric Mobility Policy Frame work India: Government of India Electric Mobility Policy Frame work – Global Scenario of EV adoption – Electric mobility in India – National Electric Mobility Mission Plan 2020 – Action led by Original Equipment Manufacturers – Need of EV Policy –                        | 9 |

| Advantage of EV Eco system – Scope and Applicability of EV Policy.   |   |
|----------------------------------------------------------------------|---|
| Tamil Nadu E-vehicle Policy 2019: Vehicle Population in Tamil Nadu – |   |
| Objectives of EV Policy – Policy Measures – Demand side incentives – | 8 |
| Supply side incentives to promote EV manufacturing – Revision of     |   |
| Transport Regulation of EV – Charging structure – implementing       |   |
| agencies – R&D and Business Incubation – Recycling Ecosystem –       |   |
| Battery and EVs                                                      |   |

# **Reference Books**

- 1. A.K Babu, Electric & Hybrid Vehicle, Khanna Publication, New Delhi 2018 Edition
- 2. Iqbal Husian, Electric and Hybrid Vehicle Design Foundamentals, CRC Press, Boca Raton, Florida
- 3. Modern Electric, Hybrid Electric and Fuel Cell Vehicles, Mehrdad Ehsani, Yimin Gao, Sebastien E.Gay, Ali Emadi, CR Press, London, New York.
- Comparison of Electric and Conventional Vehicles in Indian Market: Total Cost of Ownership, Consumer Preference and Best Segment for Electric Vehicle (IJSR), Akshat Bansal, Akriti Agarwal
- 5. A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development (MDPI), Fuad Un-Noor, Sanjeevikumar Padmanaban, Lucian Mihet-Popa, Mohammad Nurunnabi Mollah and Eklas Hossain.
- 6. Electric Vehicles: A future Projection CII October 2020 report.
- 7. Design and analysis of aluminum/air battery system for electric vehicles, Shaohua Yang, Harold Knickle, Elsevier.
- 8. Propelling Electric Vehicles in India, Technical study of Electric Vehicles and Charging Infrastructure

# Reference Web Link / Video

| Topic                                                     | Website   | Link                                                                                    |
|-----------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------|
| Fundamentals of Electric vehicles: Technology & Economics | NPTEL     | https://nptel.ac.in/courses/108/106/108106170/                                          |
| Electric vehicles                                         | IIT DELHI | https://www.youtube.com/watch?v=L2HbpEMfryM<br>&list=PLp6ek2hDcoNCROoQbG05xNfiBEY7492Vn |

# Blank Page

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

### **N-SCHEME**

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021620

Semester : VI

Subject Title : Industrial Management and Transport Engineering

# **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject                             | Instr           | uctions             | Examination                                        |      |          |        |
|-------------------------------------|-----------------|---------------------|----------------------------------------------------|------|----------|--------|
| 4021620<br>Industrial<br>Management | Hours /<br>Week | Hours /<br>Semester | Marks Internal Board Assessment Examinations Total |      | Duration |        |
| and Transport Engineering           | 5               | 80                  | 25                                                 | 100* | 100      | 3 Hrs. |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

# **Topics and Allocation of Hours**

| Unit | Торіс                                                              | Hrs. |
|------|--------------------------------------------------------------------|------|
| ı    | Principles of Management and Personnel Management                  | 15   |
| II   | Financial management and Material Management                       | 15   |
| III  | Goods Transport, Passenger Transport and Costing in Road Transport | 15   |
| IV   | Motor Vehicles Act, Taxation, Insurance and Traffic rules & signs  | 14   |
| V    | Engineering Ethics and Human Values                                | 14   |
|      | Test & Revision                                                    | 7    |
|      | Total                                                              | 80   |

#### Rationale

The Automobile technicians can play key role in management of transport organization. The transport industry provided good employment opportunities for Diploma in Automobile engineer as service engineer, fleet supervisor and depot supervisor. The automobile technician requires in-depth knowledge of motor vehicle act, rules, record keeping, estimation and valuation of vehicle, standard operating procedures. This subject imparts knowledge on principles of management, personnel management, financial management and material management.

# **Objective**

- To learn the principles of Management and personnel management.
- To study about the financial management and material management.
- To learn the Goods and Passenger transport operations.
- To study about the motor vehicles act.
- To learn the principles of engineering ethics and human value

# 4021620- INDUSTRIAL MANAGEMENT AND TRANSPORT ENGINEERING DETAILED SYLLABUS

| Unit | Name of the Topics                                                       | Hours |
|------|--------------------------------------------------------------------------|-------|
| I    | PRINCIPLES OF MANAGEMENT AND PERSONNEL MANAGEMENT                        |       |
|      | 1.1: Principles of Management                                            | 6     |
|      | Definition of management – Organization – F.W. Taylor's and Henry        |       |
|      | Fayol's Principles of Management – Functions of Manager – Leadership     |       |
|      | – Types of Leadership – Qualities of a good leader. Motivation: Positive |       |
|      | and negative motivation. Modern management techniques: Management        |       |
|      | Information Systems – Strategic management – SWOT Analysis -             |       |
|      | Business Process Re-engineering (BPR) – Activity Based Management        |       |
|      | (ABM) – Global Perspective – Principles and brief description.           |       |
|      | 1.2: Personnel Management                                                | 5     |
|      | Responsibility of human resource management – Selection procedure –      |       |
|      | Training of workers – Apprentice training – On the job training. Job     |       |
|      | evaluation and merit rating – objectives and importance – wages and      |       |
|      | salary administration – Components of wages – Wage fixation – Type of    |       |

|     | wage payment – Halsey's 50% plan, Rowan's plan and Emerson's               |   |
|-----|----------------------------------------------------------------------------|---|
|     | efficiency plan.                                                           |   |
|     | 1.3: Organizational behavior                                               | 4 |
|     | Definition – organization – Types of Organization – Taylor's Pure          |   |
|     | functional types – Line and staff and committee type – Organizational      |   |
|     | Approaches - individual behavior - causes - environmental effect -         |   |
|     | Behavior and Performance, Perception - organizational implications.        |   |
| II  | FINANCIAL MANAGEMENT AND MATERIAL MANAGEMENT                               |   |
|     | 2.1: Financial Management                                                  | 8 |
|     | Fixed and working capital – Resources of capital – shares preference       |   |
|     | and equity shares – debentures – Type of debentures – Public deposits,     |   |
|     | Factory costing – direct cost – indirect cost – Factory overhead – Selling |   |
|     | price of a product – Profit – Problems. Depreciation – Causes – Methods    |   |
|     | - Straight line, sinking fund and percentage on diminishing value method.  |   |
|     | 2.1: Material Management                                                   | 7 |
|     | Objectives of good stock control system – ABC analysis of inventory –      |   |
|     | Procurement and consumption cycle – Minimum Stock, Lead Time,              |   |
|     | Reorder Level - Economic order quantity – problems – supply chain          |   |
|     | management - Purchasing procedure – Store keeping – Bin card.              |   |
| III | GOODS TRANSPORT, PASSENGER TRANSPORT AND COSTING IN                        |   |
|     | ROAD TRANSPORT                                                             |   |
|     | 3.1: Goods Transport                                                       | 5 |
|     | Simple layout of garages and depot for goods transport vehicle –           |   |
|     | Material Handling equipment - Scheduling of goods transport -              |   |
|     | Management Information System (MIS) in goods transport operation -         |   |
|     | transshipments and subcontracting - Storage & transportation of            |   |
|     | petroleum products.                                                        |   |
|     | 3.2: Passenger Transport                                                   | 8 |
|     | Administrative set up of a passenger Transport organization, traffic       |   |
|     | investigation to improve services – peak hour demands – Application of     |   |
|     | C.P.M in evaluation of shortest operating distance of vehicle.             |   |
|     | Classification of vehicles: express, limited stop, relief services. Fare   |   |
|     | structure, Fare table calculation, and Fare collection methods - vehicle   |   |
|     |                                                                            |   |

|    | schedule in city service – drivers and conductors duty schedules – ticket     |   |
|----|-------------------------------------------------------------------------------|---|
|    | system, trip sheet – incentive schemes for improving the service.             |   |
|    | 3.3: Costing in Road Transport                                                | 2 |
|    | Total cost, fixed cost, variable cost, running cost, overheads – control of   |   |
|    | costs – different methods.                                                    |   |
| IV | MOTOR VEHICLES ACT, TAXATION, INSURANCE AND TRAFFIC                           |   |
|    | RULES & SIGNS                                                                 |   |
|    | 4.1: Motor Vehicles Act                                                       | 7 |
|    | Motor Vehicle act - Definition - Licensing of drivers and conductors -        |   |
|    | procedure for registering a new vehicle - fitness certificate - issue of non- |   |
|    | road worthy certificate - Inspection of transport vehicle - inspection of     |   |
|    | accidents and recording – enforcement of emission norms. Permit:              |   |
|    | Public service vehicle permit - Goods carriage permit - National Permit -     |   |
|    | Contract carriage permit. Licensing taxies and buses - offences -             |   |
|    | penalties and procedure.                                                      |   |
|    | 4.2: Taxation                                                                 |   |
|    | Structure - method of laying taxation - Goods vehicle taxation -              | 3 |
|    | passenger vehicle taxation - tax exemption - one / life time taxation. Toll   |   |
|    | tax reasons and operational management.                                       |   |
|    | 4.3: Insurance:                                                               |   |
|    | Types of Insurance - accident claims and settlement - duty of driver in       | 2 |
|    | case of accident.                                                             |   |
|    | 4.4: Traffic rules & signs                                                    |   |
|    | Traffic rules - Traffic signs - road signs - road safety norms.               | 2 |
| V  | ENGINEERING ETHICS AND HUMAN VALUES                                           |   |
|    | 5.1: Engineering Ethics                                                       | 8 |
|    | Definition - engineering ethics - personal and business ethics - duties       |   |
|    | and rights - engineering as a profession – core qualities of professional     |   |
|    | practitioners - environment and their impact - code of ethics - procedure     |   |
|    | for solving ethical conflicts – ethical Judgment - Kohiberg's stages of       |   |
|    | moral development - value based ethics - engineers as managers,               |   |
|    | consultants and leaders - environmental ethics - computer ethics -            |   |
|    | Intellectual Property Rights (IPRs).                                          |   |

| 5.2: Human values                                                           | 6 |
|-----------------------------------------------------------------------------|---|
| morals – values – integrity - service learning – civic virtue - respect for |   |
| others - living peacefully - caring – sharing –honesty - courage - valuing  |   |
| time cooperation - commitments – empathy - self-confidence – character      |   |
| - stress management.                                                        |   |

# **Reference Book**

- O.P.Khanna, Industrial Engineering and Management, Revised Edition 2004,
   Dhanpat Rai, Publications(P)Ltd.
- 2. T.R.Banga & S.C.Sharma, Engineering Economics and Management, McGraw Hill.
- 3. Heinz Weihrich, Harold Koontz, Management, A global perspective, McGraw Hill international edition 1994.
- 4. Joseph L.Massie, Essentials of Management, 4th Edition, Prentice-Hall of India.
- 5. Goods vehicle Operation— Dunbar.
- 6. Bus Operation Dunbar.
- 7. Tamilnadu Motor Vehicle Act 1989.
- 8. John Duke Fleet Management McGraw-Hill Co, USA -1984
- 9. S.Chandran, Organizational Behaviours, Vikas Publishing House Pvt. Ltd. Latest
- 10. M.Govindarajan and S.Natarajan ,Principles of Management ,Prentce Hall of India Pvt.Ltd. New Delhi.Latest.
- 11. Charles B. Fledderman, Engineering ethics, pearson prentice hall, New Jersey, 2004.

# Reference Web Link / Video

| Topic                                                         | Website | Link                                               |
|---------------------------------------------------------------|---------|----------------------------------------------------|
| Industrial Engineering                                        | NPTEL   | https://nptel.ac.in/courses/112/107/1121071<br>42/ |
| Ethics in Engineering Practice                                | NPTEL   | https://nptel.ac.in/courses/110/105/1101050<br>97/ |
| Humanities and Social<br>Sciences - Exploring<br>Human Values | NPTEL   | https://nptel.ac.in/courses/109/104/1091040<br>68/ |

# Blank Page

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

# N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4020531

Semester : VI

Subject Title : Computer Integrated Manufacturing

# **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject                | Inst   | ructions | Examination            |                       |       |          |
|------------------------|--------|----------|------------------------|-----------------------|-------|----------|
| 4020531                | Hours  | Hours /  |                        | Marks                 |       |          |
| Computer<br>Integrated | / Week | Semester | Internal<br>Assessment | Board<br>Examinations | Total | Duration |
| Manufacturing          | 5      | 80       | 25                     | 100*                  | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

# **Topics and Allocation of Hours**

| Unit No | Topics                       | Hours |
|---------|------------------------------|-------|
| I       | Computer Aided Design        | 15    |
| II      | Computer Aided Manufacturing | 14    |
| Ш       | CNC programming              | 16    |
| IV      | FMS, AGV, AS/RS, Robotics    | 14    |
| V       | Advanced concepts of CIM     | 14    |
|         | Test and Model Exam          | 7     |
|         | Total                        | 80    |

# **RATIONALE:**

As per the latest requirements in the Industries this enables to learn the various concepts of Computer Aided Design and Manufacturing. They are able to operate CNC machines and write part program. They are able to understand the advanced concepts adopted in automated industries.

# **OBJECTIVES:**

- Acquire knowledge in the field of Computer aided Design
- Explain the various concepts of Computer Aided manufacturing
- Write part program for manufacturing components in CNC machines
- Explain the concepts of automatic material handling and storage systems and robotics
- Explain the advanced concepts of CIM

# **DETAILED SYLLABUS**

Contents: Theory

| Unit | Name of the Topics                                                         | Hours |
|------|----------------------------------------------------------------------------|-------|
| I    | Computer Aided Design                                                      |       |
|      | Computer Aided Design: Introduction – definition – Shigley's design        | 6     |
|      | process - CAD activities - benefits of CAD - CAD software packages -       |       |
|      | point plotting, drawing of lines, Bresenham's circle algorithm,            |       |
|      | Transformations: 2D & 3D transformations – translation, scaling, rotation  |       |
|      | and concatenation.                                                         |       |
|      | Geometric modelling: Techniques - Wire frame modelling – applications –    | 6     |
|      | advantages and disadvantages. Surface modelling – types of surfaces –      |       |
|      | applications – advantages and disadvantages – Solid modelling – entities – |       |
|      | advantages and disadvantages – Boolean operations - Boundary               |       |
|      | representation – Constructive Solid Geometry – Comparison.                 |       |
|      | Graphics standard: Definition – Need - GKS –IGES – DXF. Finite Element     | 3     |
|      | Analysis: Introduction – Development - Basic steps – Advantages.           |       |
| II   | Computer Aided Manufacturing                                               |       |
|      | CAM – Definition - functions of CAM – benefits of CAM. Introduction of CIM | 3     |
|      | - concept of CIM - evolution of CIM - CIM wheel - Benefits - integrated    |       |

|     | CAD/CAM.                                                                      |    |
|-----|-------------------------------------------------------------------------------|----|
|     | Group technology: Part families - Parts classification and coding - coding    | 6  |
|     | structure – Opitz system, MICLASS system and CODE System. Process             |    |
|     | Planning: Introduction – Computer Assisted Process Planning (CAPP) –          |    |
|     | Types of CAPP - Variant type, Generative type – advantages of CAPP.           |    |
|     | Production Planning and Control (PPC): Definition – objectives - Computer     | 5  |
|     | Integrated Production management system – Master Production Schedule          |    |
|     | (MPS) – Capacity Planning – Materials Requirement Planning (MRP) –            |    |
|     | Manufacturing Resources Planning (MRP-II) – Shop Floor Control system         |    |
|     | (SFC) - Just In Time manufacturing philosophy (JIT) - Introduction to         |    |
|     | Enterprise Resources Planning (ERP).                                          |    |
| III | CNC Programming                                                               | 16 |
|     | NC in CAM, tooling for CNC – ISO designation for tooling – CNC operating      |    |
|     | system. Programming for CNC machining – part program - Manual part            |    |
|     | programming - coordinate system – Datum points: machine zero, work            |    |
|     | zero, tool zero - reference points - NC dimensioning – G codes and M          |    |
|     | codes – linear interpolation and circular interpolation - CNC program         |    |
|     | procedure - sub-program – canned cycles - stock removal – thread cutting      |    |
|     | – mirroring – drilling cycle – pocketing. Rapid prototyping: Classification – |    |
|     | subtractive – additive – advantages and applications – materials – Virtual    |    |
|     | machining.                                                                    |    |
| IV  | FMS, AGV, AS/RS, Robotics                                                     |    |
|     | FMS: Introduction – FMS components – FMS layouts – Types of FMS:              | 5  |
|     | Flexible Manufacturing Cell (FMC) – Flexible Turning Cell (FTC) – Flexible    |    |
|     | Transfer Line (FTL) – Flexible Machining System (FMS) – benefits of FMS       |    |
|     | - introduction to intelligent manufacturing system.                           |    |
|     | Material handling in CIM environment: Types – AGV: Introduction – AGV -       | 3  |
|     | working principle – types – benefits. AS/RS – working principle –types –      |    |
|     | benefits.                                                                     |    |
|     | Robotics: Definition – robot configurations – basic robot motion – robot      | 6  |
|     | programming method – robotic sensors – end effectors – mechanical             |    |
|     | grippers – vacuum grippers – robot programming concepts - Industrial          |    |
|     | applications of Robot: Characteristics - material transfer and loading -      |    |

|   | welding - spray coating - assembly and inspection.                                  |    |
|---|-------------------------------------------------------------------------------------|----|
| ٧ | Advanced Concepts Of CIM                                                            | 14 |
|   | Concurrent Engineering: Definition – Sequential Vs Concurrent engineering           |    |
|   | <ul> <li>need of CE – benefits of CE. Quality Function Deployment (QFD):</li> </ul> |    |
|   | Definition – House of Quality (HOQ) – advantages – disadvantages. Steps             |    |
|   | in Failure Modes and Effects Analysis (FMEA) – Value Engineering (VE) –             |    |
|   | types of values – identification of poor value areas – techniques – benefits.       |    |
|   | Guide lines of Design for Manufacture and Assembly (DFMA). Product                  |    |
|   | Development Cycle: Product Life Cycle - New product development                     |    |
|   | processes. Augmented Reality (AR) - Introduction - concept -                        |    |
|   | Applications.                                                                       |    |
| 1 |                                                                                     |    |

#### **REFERENCES BOOKS:**

- R.Radhakrishnan, and S.Subramanian, "CAD/CAM/CIM", New Age International Pvt. Ltd.
- 2. Mikell P.Groover, and Emory Zimmers, "CAD/CAM", Jr.Prentice Hall of India Pvt., Ltd.
- 3. Dr.P.N.Rao, "CAD/CAM Principles and Applications,", Tata Mc Graw Hill Publishing Company Ltd.
- 4. Ibrahim Zeid, "Mastering CAD/CAM", Tata McGraw-Hill Publishing Company Ltd., New Delhi.
- 5. Mikell P. Groover, "Automation, Production Systems, and Computer-Integrated Manufacturing", Pearson Education Asia.
- 6. Yoram Koren, "Computer control of manufacturing systems,", McGraw Hill Book.
- 7. Chris Mcmahon and Jimmie Browne, "CAD/CAM Principle Practice and Manufacturing Management", Addision Wesley England, Second Edition, 2000.
- 8. Dr.Sadhu Singh, "Computer Aided Design and Manufacturing,", Khanna Publishers, NewDelhi, Second Edition, 2000.
- 9. S.Kant Vajpayee, "Principles of Computer Integrated Manufacturing,", Prentice Hall of India, 1999.
- 10. David Bed worth, "Computer Integrated Design and Manufacturing,", TMH, 1998.

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021632

Semester : VI

Subject Title : Heavy Vehicle Engineering

# **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject          | Instr   | uctions  | Examination |                |       |          |
|------------------|---------|----------|-------------|----------------|-------|----------|
| 4021632<br>Heavy | Hours / | Hours /  | Internal    | Marks<br>Board | Tatal | Duration |
| Vehicle          | Week    | Semester | Assessment  | Examinations   | Total |          |
| Engineering      | 5       | 80       | 25          | 100*           | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

# **Topics and Allocation of Hours**

| UNIT            | TOPIC                                                 | TIME |
|-----------------|-------------------------------------------------------|------|
| ı               | Truck classifications, Shop Safety and Operations     | 14   |
| II              | Electrical Systems                                    | 15   |
| III             | Transmission System                                   | 15   |
| IV              | Drive Shafts, Steering system                         | 14   |
| V               | V Suspension Systems, Wheels and Tires, Brake systems |      |
| Test & Revision |                                                       |      |
| Total           |                                                       |      |

#### **RATIONALE:**

For the decades a shortage of truck technicians existed throughout the world. The job opportunities and rates of pay in the trucking industry are increased. Good truck technicians are in high demand. The skill required of the truck technician is that of being a lifelong learner to keep abreast of the fast-changing technology of this industry. Considering the above factors this subject is introduced.

# **OBJECTIVES:**

- Explain the basic truck classifications.
- Describe the safety warnings in the work area.
- List some common tools used in heavy truck repair.
- Define the role of a battery in a vehicle electrical system.
- Identify the components of a charging system.
- Troubleshoot truck electrical circuit components.
- Describe the electronic components.
- Understand the operation and maintenance of the clutch.
- Identify the standard transmissions.
- Describe the automatics transmissions.
- Describe the components and operation of steering systems.
- Explain the wheels and tires.
- Define the Brakes systems.

# 4021632 HEAVY VEHICLE ENGINEERING <u>DETAILED SYLLABUS</u>

Contents: Theory

| Unit | Name of the Topics                                                     | Hours |
|------|------------------------------------------------------------------------|-------|
| I    | TRUCK CLASSIFICATIONS, SHOP SAFETY AND OPERATIONS                      |       |
|      | 1.1: Truck classifications                                             | 6     |
|      | By Weight – By Wheel Number – Major Manufacturers – Components of      |       |
|      | Heavy Duty Truck – Career Opportunities for Heavy Duty Truck           |       |
|      | Technicians.                                                           |       |
|      | 1.2: Shop Safety and Operations                                        | 8     |
|      | Personal Safety - Work Area Safety - Fire Safety - Hazardous Materials |       |

|    | – Handling and Disposal of Hazardous Waste. Tools: Hand Tools –           |   |
|----|---------------------------------------------------------------------------|---|
|    | Power Tools – Measuring Tools. Fasteners: Grades and Glasses –            |   |
|    | Fastener Replacement – Repairing Damaged threads – Riveting.              |   |
|    | Preventive Maintenance – Driver Inspection Report - Commercial Vehicle    |   |
|    | Safety Alliance Standard Inspection Procedure – PM Trailer Inspection     |   |
|    | Guide – Federal Inspection regulations – Lubricants – Winterizing.        |   |
| II | ELECTRICAL SYSTEMS                                                        |   |
|    | Electrical Motor and Generator principle – Coils – Transformers and       | 8 |
|    | Solenoids - Battery Operating Principles - Battery Ratings - Battery      |   |
|    | Maintenance – Battery Testing: Visual Inspection – State of charge test – |   |
|    | Battery load test. Charging Battery – Slow Charging and Fast Charging –   |   |
|    | Charging Safety – Jump Starting – Battery Storage and Recycling           |   |
|    | Procedure – Alternator: Construction – Operation.                         |   |
|    | Starting Systems – Lighting Systems – Head lights – Adjustment –          | 4 |
|    | Replacement – Dimmer switch – Trailer circuit connector – Panel           |   |
|    | component – Rapid checking of a truck electrical circuit.                 |   |
|    | Electronic Service tools (EST) - Flash or Blink codes - Prolink 9000 -    | 3 |
|    | SAE / ATA J 1587 / J 1708 / J 1939 Codes and Protocols – Electrical       |   |
|    | Wiring, Connector and Terminal repair.                                    |   |
| Ш  | TRANSMISSION SYSTEM                                                       |   |
|    | 3.1: Clutch                                                               | 3 |
|    | Clutch Function – Components – Clutch Brakes – Clutch Linkages –          |   |
|    | Trouble shooting – Periodic Maintenance – Clutch Adjustment – Clutch      |   |
|    | Linkage inspection and adjustment – Clutch Servicing – Clutch             |   |
|    | Inspection – Clutch installation.                                         |   |
|    | 3.1: Gear box                                                             | 5 |
|    | Gears – Gear Train configurations – Gear shift Mechanisms – Gear shift    |   |
|    | Lever – Counter shaft gear train – Air operated gear shift system –       |   |
|    | Eighteen Speed Transmission – Thirteen Speed transmissions – Deep         |   |
|    | reduction Transmissions – Transfer Cases – Power Take off Unit.           |   |
|    | 3.3: Transmission                                                         | 7 |
|    | Transmission Servicing – Lubrication – Preventive Maintenance             |   |
|    | Inspection- Trouble Shooting – Overhauling the transmission – Torque      |   |

|    | converter Components. Automatic Transmissions – Simple Planetary           |   |
|----|----------------------------------------------------------------------------|---|
|    | Gear Sets – Components – Working principle – Compound Planetary            |   |
|    | Gear Sets – Four Speed Transmission Power Flows – Five Speed               |   |
|    | Transmission Power Flows – Hydraulic control Four Speed transmission       |   |
|    | - Hydraulic control Five Speed transmission - Hydraulic Retarders –        |   |
|    | Electronic Control transmissions.                                          |   |
| IV | DRIVE SHAFTS AND STEERING SYSTEM                                           |   |
|    | 4.1: Drive Shafts                                                          | 5 |
|    | Construction – Drive shaft inspection – Drive Axles – Differential Gearing |   |
|    | Types – Single Reduction Axle – Double Reduction Axle- Tandem Drive        |   |
|    | Axle – Drive Axle Failures.                                                |   |
|    | 4.2: Steering system                                                       | 9 |
|    | Components – Steering system inspection – Front-End Alignment – Toe        |   |
|    | – Caster – Camber – Kingpin inclination – Turning angle – Ackerman         |   |
|    | Geometry – Axle Alignment – Electronic Alignment Equipment – Steering      |   |
|    | Axle Inspection – Overhaul – Manual Steering Gears – Power Steering        |   |
|    | Systems – Air Assisted Steering Systems – Electronically Variable          |   |
|    | Steering – Load Sensing power Steering.                                    |   |
| V  | SUSPENSION SYSTEMS, WHEELS AND TIRESANDBRAKE                               |   |
|    | SYSTEMS                                                                    |   |
|    | 5.1: Suspension Systems                                                    | 5 |
|    | Types – Front Suspension – Rear Suspension – Single axle spring            |   |
|    | suspension – tandem axle spring suspension – Spring suspension with        |   |
|    | shock absorbers – Equalizing beam suspension system: Leaf spring type      |   |
|    | - rubber cushion type - Air spring suspensions - components - Air          |   |
|    | spring mechanics – Cab Air Suspension.                                     |   |
|    | 5.2: Wheels and Tires                                                      | 5 |
|    | Cast Spoke wheel – Disc wheel – wide base wheel – Tires: Types –           |   |
|    | Radial – Bias – Tire Size – Tire care and maintenance – Tire, rim and      |   |
|    | Wheel Service – Tire and rim Safety – Spoke wheel installation – Disc      |   |
|    | Wheel Installation – Wheel and Tire Balancing – Wheel hubs, Bearings       |   |
|    |                                                                            |   |
|    | and Seals – Wheel Bearing Adjustment                                       |   |
|    | and Seals – Wheel Bearing Adjustment                                       |   |

### 5.3: Brake systems

Air Brake System – Components - Truck air brake system – Trailer air brake system. Hydraulic Brake systems – Components – Hydraulic Drum Brake – Air Over Hydraulic Brake systems – Hydraulic Brake Service Procedures – ABS Components – Automatic Traction Control Systems – Fifth Wheel.

### **Reference Books**

- Heavy Duty Truck Systems, Ian Andrew Norman, Sean Bennett, John A.Corinchck, Delmar, Thomson Learning.
- 2. Tire and Vehicle Dynamics, Hans B. Pacejka, SAE International
- 3. Brake Technology Handbook, Kartheinz Bill, Bert J Breuer, SAE International
- 4. Vehicular Engine Design, Kevin L Hoag, SAE International
- 5. Handbook of Automotive Engineering, Ulrich W.Seiffert, Hans Hermann Bracess, SAE International
- 6. Advanced Hybrid Power trains for Commercial Vehicles, Haoran Hu, Simon Baseley, Rudolf M Smaling, SAE International

5

### Blank Page

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021633

Semester : VI

Subject Title : Heating Ventilation and Air Conditioning Systems

### **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject                            | Instructions    |                     |                        | Examination              | 1     |          |
|------------------------------------|-----------------|---------------------|------------------------|--------------------------|-------|----------|
| 4021633<br>Heating<br>Ventilation  | Hours /<br>Week | Hours /<br>Semester | Internal<br>Assessment | Marks Board Examinations | Total | Duration |
| and Air<br>Conditioning<br>Systems | 5               | 80                  | 25                     | 100*                     | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

### **Topics and Allocation of Hours**

| UNIT | TOPIC                                                | TIME |  |  |
|------|------------------------------------------------------|------|--|--|
| I    | Basics of Air-Conditioning and Refrigeration Systems | 15   |  |  |
| II   | Psychrometry and Air-Conditioning Systems            | 15   |  |  |
| III  | Cooling and Heating Load Calculations and Analysis   | 15   |  |  |
| IV   | Air Routing, Temperature Control and Servicing       | 14   |  |  |
| V    | Automobile Air-Conditioning Systems                  | 14   |  |  |
|      | Test & Revision                                      | 7    |  |  |
|      | Total                                                |      |  |  |

#### Rationale

All the automobile are vehicles are equipped with Air Conditioning. Hence the fundamental knowledge of air Conditioning is most essential for an automobile. This course will help in understanding the principle of Refrigeration, Air-Conditioning and Psychrometry properties and also understanding the duct and ventilation design.

### **Objectives**

At the end of the course, the students will be able

- To understand the components of the automotive air-conditioning and their functions
- To understand the recent developments in this field
- To present a problem oriented in-depth knowledge of Automotive air conditioning
- To address the underlying concepts and methods behind Automotive air conditioning

## 4021633 HEATING VENTILATION AND AIR CONDITIONING SYSTEMS <u>DETAILED SYLLABUS</u>

Contents: Theory

| Unit | Name of the Topics                                                       | Hours |
|------|--------------------------------------------------------------------------|-------|
| ı    | BASICS OF AIR-CONDITIONING AND REFRIGERATION SYSTEMS                     |       |
|      | Introduction - Types of Refrigeration Systems – Working principle of     | 8     |
|      | vapour Compression Refrigeration System, vapour Absorption               |       |
|      | Refrigeration System. Applications. Coefficient of Performance - Ton of  |       |
|      | Refrigeration - Simple problems.                                         |       |
|      | Refrigerants: Primary and Secondary Refrigerants - Classification of     | 7     |
|      | Refrigerants - Properties - Commonly used refrigerants - Alternative     |       |
|      | refrigerants - Eco-friendly Refrigerants - Applications of Refrigerants. |       |
|      | Major Refrigerants used in Automobile Air-conditioning system.           |       |
| II   | PSYCHROMETRY AND AIR-CONDITIONING SYSTEMS                                |       |
|      | Psychrometry – Basic Terminology - Psychrometric Mixtures -              | 8     |
|      | Psychrometric Tables and Charts - Psychrometric Processes - Comfort      |       |
|      | Charts - Simple problems in Psychrometric Processes - Factors Affecting  |       |
|      | Comfort Temperature and Effective Temperature.                           |       |

|     | Air-Conditioning System Layouts Central Air-conditioning systems -           | 7 |
|-----|------------------------------------------------------------------------------|---|
|     | System Components – Compressor – Evaporator – Condenser -                    |   |
|     | Expansion Devices - Receiver dryer - Fan Blowers - Heating System.           |   |
|     | Switch and Electrical Wiring Circuit. Air Distribution Systems: Distribution |   |
|     | ducting - Sizing - Supply duct - Return Duct - Type of Grills - Diffusers,   |   |
|     | Ventilation - air Noise Level - Layout of Duct Systems for Automobiles.      |   |
| III | COOLING AND HEATING LOAD CALCULATIONS AND ANALYSIS                           |   |
|     | Load Calculations and Analysis. Design considerations for achieving          | 7 |
|     | desired room conditions with respect to prevailing outside/environment       |   |
|     | conditions. Factors affecting the load on Refrigeration and Air-             |   |
|     | conditioning Systems.                                                        |   |
|     | Cooling and Heating Load Calculations. Load calculations for                 | 8 |
|     | Automobiles. Problems on Cooling and Heating Load Calculations. Effect       |   |
|     | of Air-conditioning load on Engine Performance in terms of loss of           |   |
|     | available Peak Torque/Power and Fuel Consumption.                            |   |
| IV  | AIR ROUTING, TEMPERATURE CONTROL AND SERVICING                               |   |
|     | Air Routing and Temperature Control: Objectives of the Dashboard Re-         | 7 |
|     | circulating Unit - Automatic Temperature Control - Controlling Flow -        |   |
|     | Control of Air-handling systems and Air Flow Through – Evaporator            |   |
|     | Care.                                                                        |   |
|     | Air-Conditioning Service: Air-Conditioner Maintenance and Service -          | 7 |
|     | Removing and replacing Components. Compressor Service. Testing,              |   |
|     | Diagnosis and Trouble Shooting of Air-conditioning system. Refrigerant       |   |
|     | Gas Charging Procedure and Servicing of Heater System.                       |   |
| V   | AUTOMOBILE AIR-CONDITIONING SYSTEMS                                          |   |
|     | Automotive Heaters - Manually Controlled and Automatically Controlled        | 7 |
|     | Air-conditioner and Heater System. Common controls such as                   |   |
|     | thermostats, Humidistat, Control Dampers, Pressure Cut-outs, Relays          |   |
|     | Automatic temperature control.                                               |   |
|     | Automobile Air-conditioning - Air conditioning for Passengers - Isolated     | 7 |
|     | Vehicles - Refrigerated Transport Vehicles. Applications related with        |   |
|     | Very Low Temperatures - Location of Air-conditioning Components in a         |   |
|     | Car – Schematic Layout of a Vehicle Refrigeration System                     |   |

### **Reference Books**

- 1. Automotive Air conditioning, William H Crouse and Donald L Anglin, McGraw Hill Inc.
- 2. Air Conditioning, Paul Lang, C.B.S. Publisher & Distributor, Delhi.
- 3. Automotive Air-Conditioning, Paul Weiser Reston Publishing Co.
- 4. Automotive Air Conditioning, Goings, L.F., American Technical services
- 5. Automotive Air Conditioning, McDonald, K.L., Theodore Audel series
- 6. Automotive Air Conditioning, Paul Weisler, Reston Publishing Co. Inc.

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021640

Semester : VI

Subject Title : Hybrid Electrical Vehicle Practical

#### TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

| Subject                                 | Instr           | uctions             | Examination            |                                |       |          |
|-----------------------------------------|-----------------|---------------------|------------------------|--------------------------------|-------|----------|
| 4021640Hybr<br>id Electrical<br>Vehicle | Hours /<br>Week | Hours /<br>Semester | Internal<br>Assessment | Marks<br>Board<br>Examinations | Total | Duration |
| Practical                               | 5               | 80                  | 25                     | 100*                           | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

### **RATIONALE:**

Electric Vehicles (EVs) have emerged a popular clean mobility choice to reduce emissions. EVs are powered fully or partially by batteries, they can help to reduce dependence on fossil fuels also air quality. Tamil Nadu is one of the most advanced states in India. Tamil Nadu has a highly developed industrial eco-system and is very strong in sectors like automobiles and auto-components. Many globally renowned companies have setup their manufacturing facilities in Tamil Nadu. This subject introduced by keeping all the above factors.

### **OBJECTIVES:**

- To learn and practice the charging systems of Electric Vehicles.
- To understand the concept of Electric Vehicle components.
- To study the configurations of Electric Vehicles and assemble.
- To acquire knowledge about Energy Storages, Charging System, Effects and Impacts.

### 4021640 HYBRID ELECTRICALVEHICLEPRACTICAL

### **Exercises**

#### Part - A

- Test the Lead acid Battery on Open Circuit Voltage, Hydrometer and High Discharge Tests.
- 2. Construct and test battery back for an Electric Vehicle. (Test the batter pack supply to glow the Head lamp)
- 3. Test buck converter (DC to DC converter)
- 4. Test the Inverter circuit (DC to AC Converter)
- 5. Test the BLDC motor with triggering angle or Throttle control
- 6. Test the battery charger unit and note the various charging parameter

### Part - B

- 1. Assemble and test the wiring harness for two-wheeler accessories
- Identify and test EV components (Controller, Throttle, EV motor, Power ON Key & brake)
- 3. Test the Lead acid battery by using Battery voltage tester or Current Tester and indicate the status
- 4. Assemble and test E-bicycle with wiring harness
- 5. Assemble and test E-Bike with central drive mechanism (Chain drive) wiring harness
- 6. Assemble and test E-Auto rickshaw with differential and wiring harness

### **BOARD EXAMINATION**

### Note:

- All the exercises/experiments in both sections should be completed. Two
  exercises/experiments will be given for examination by selecting one from PART A
  and one from PART B.
- All the exercises/experiments should be given in the question paper and students
  are allowed to select by a lot or Question paper issued from the DOTE should be
  followed.
- All regular students appearing for first attempt should submit record notebook for the examination.

- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machineries / equipments before commencement of the board practical examination.

### **DETAILLED ALLOCATION OF MARKS**

| SI. No. | Description             | Max.Marks |  |  |  |  |  |
|---------|-------------------------|-----------|--|--|--|--|--|
|         | PART A                  |           |  |  |  |  |  |
| 1       | Procedure / Observation | 15        |  |  |  |  |  |
| 2       | Test report             | 30        |  |  |  |  |  |
|         | PART B                  |           |  |  |  |  |  |
| 3       | Procedure / Explanation | 15        |  |  |  |  |  |
| 4       | Assemble / Test Report  | 30        |  |  |  |  |  |
| 5       | Viva-voce               | 10        |  |  |  |  |  |
|         | Total                   |           |  |  |  |  |  |

## LIST OF EQUIPMENT / TOOLS/MACHINERY'S REQUIRED (for a batch of 30 students)

| SI. No. | Machines / Tools / Equipments               | Quantity |
|---------|---------------------------------------------|----------|
| 1.      | Lead acid battery                           | 8 No's   |
| 2.      | Battery Load tester                         | 2 No's   |
| 3.      | Buck Converter (5 V or 24 V or 48 V)        | 2 No's   |
| 4.      | Battery Charger Unit with Lead Acid battery | 2 No's   |
| 5.      | Inverter Trainer Kit                        | 1 No     |
| 6.      | BLDC motor control Trainer kit              | 1 No     |
| 7.      | Two wheeler Wiring Harness board or kit     | 1 No     |
| 8.      | E – Bicycle kit or Accessories              | 2 No's   |
|         | 24V DC Controller                           |          |

|     | 24 V DC motor                        |                    |  |  |  |
|-----|--------------------------------------|--------------------|--|--|--|
|     | Throttle                             |                    |  |  |  |
|     | Brake                                |                    |  |  |  |
|     | Power ON key                         |                    |  |  |  |
|     | Head lamp with Horn                  |                    |  |  |  |
|     | E – Bike kit or Accessories          |                    |  |  |  |
|     | 48 V BLDC Controller                 |                    |  |  |  |
|     | 500W or 750 W, 48 V BLDC motor       |                    |  |  |  |
|     | Throttle                             |                    |  |  |  |
| 9.  | Brake                                | 2 No's             |  |  |  |
|     | Power ON key                         |                    |  |  |  |
|     | Display Board                        |                    |  |  |  |
|     | Head lamp with Horn                  |                    |  |  |  |
|     | Left & Right Indicator               |                    |  |  |  |
| 10. | 500 W or 750 W, 48 V BLDC motor with | 1 No               |  |  |  |
| 10. | differential arrangement             | TINO               |  |  |  |
|     | Consumable: -                        |                    |  |  |  |
|     | Battery Cell - 1.5 V or 3.65 V       |                    |  |  |  |
|     | Soldering Iron                       |                    |  |  |  |
|     | Flux                                 |                    |  |  |  |
|     | De-solder gun or Solder wick         |                    |  |  |  |
|     | Lead                                 | As per requirement |  |  |  |
| 11. | Tools                                | (LS)               |  |  |  |
|     | Continuity Tester                    | (LO)               |  |  |  |
|     | Line Tester                          |                    |  |  |  |
|     | Multi-meter                          |                    |  |  |  |
|     | Hydrometer                           |                    |  |  |  |
|     | Screw Drive set                      |                    |  |  |  |
|     | Spanner set                          |                    |  |  |  |

## STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

### N - SCHEME

(To be implemented for the students admitted from the year 2020 – 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4020561

Semester : VI

Subject Title : Computer Integrated Manufacturing Practical

### TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

| Subject                           | Instructions    |                     |                        | Examination           |       |          |
|-----------------------------------|-----------------|---------------------|------------------------|-----------------------|-------|----------|
| 4020561                           | 11              | Цашта /             |                        | Marks                 |       |          |
| Computer Integrated Manufacturing | Hours<br>/ Week | Hours /<br>Semester | Internal<br>Assessment | Board<br>Examinations | Total | Duration |
| Practical                         | 4               | 64                  | 25                     | 100*                  | 100   | 3 Hrs.   |

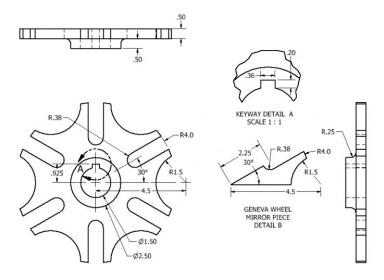
<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

### **RATIONALE:**

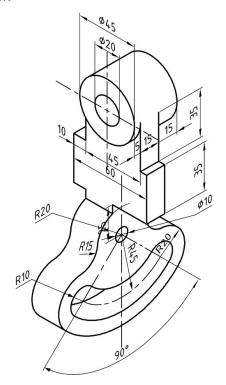
As per the latest requirements in the Industries this enables to learn the various concepts of Computer Integrated Manufacturing. They are able to write part program and able operate CNC lathe and Milling machines. They are able to understand the advanced concepts adopted in CIM.

### **OBJECTIVES:**

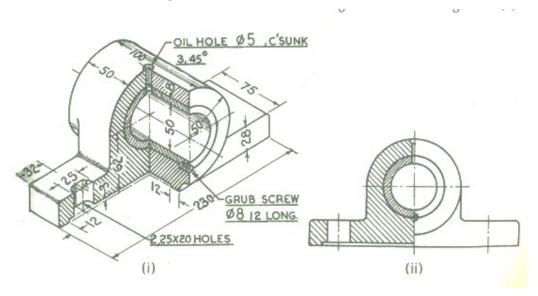
- Acquire knowledge in the field of Computer Integrated Manufacturing
- Create 3D Solid models of machine components using modelling software
- Execute and perform machining operations in CNC Lathe and CNC Milling machines.


### **DETAILED SYLLABUS**

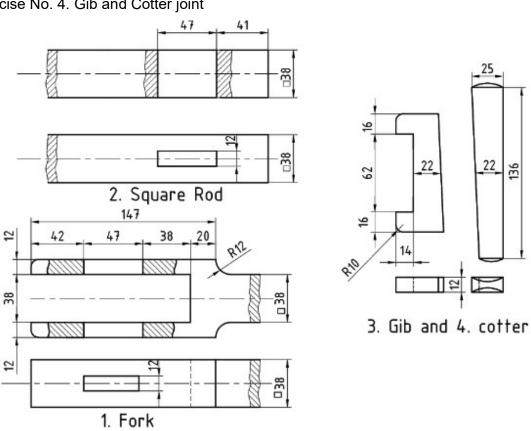
**Contents: Practical** 


### **PART A: SOLID MODELLING**

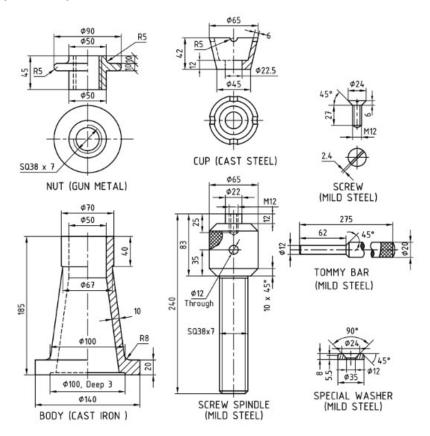
Introduction to Part modelling - Datum Plane - constraint - sketch - dimensioning - extrude - revolve - sweep - blend - protrusion - extrusion - rib - shell - hole - round - chamfer - copy - mirror - assembly - align - orient - drawing and detailing -creating assembly views


Exercise No. 1. Geneva Wheel

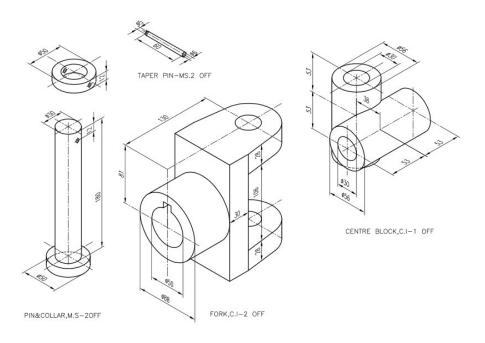



Exercise No. 2. Bearing Block




### Exercise No. 3. Bushed bearing




Exercise No. 4. Gib and Cotter joint



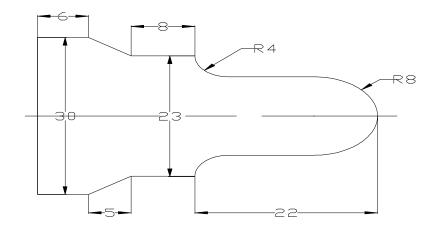
### Exercise No. 5. Screw Jack



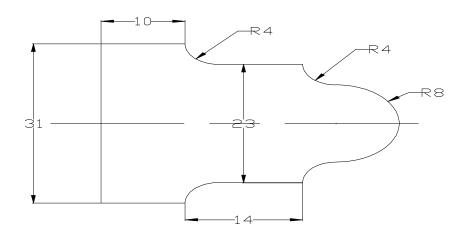
Exercise No. 6. Universal Coupling



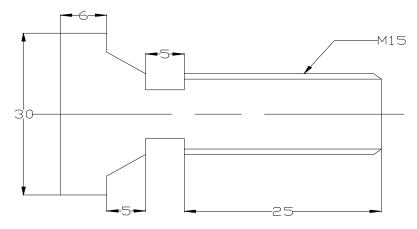
Note: Print the orthographic view and sectional view from the above assembled 3D drawing.


### **PART B: CNC Programming and Machining**

Introduction: 1. Study of CNC lathe, milling. 2. Study of international standard codes: G-Codes and M-Codes 3. Format – Dimensioning methods. 4. Program writing – Turning simulator – Milling simulator, IS practice – commands menus. 5. Editing the program in the CNC machines. 6. Set the machine and execute the program in the CNC machines.


Note: Create and edit the part program in the simulation software for verification of the part program. Enter / tranfer the program to make the component in the CNC machine.

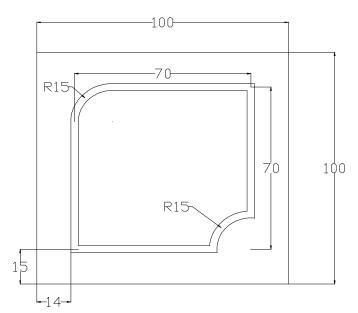
**CNC Turning Machine** Material: M.S / Aluminium / Acrylic fibre / Plastic


1. Using Linear and Circular interpolation - Create a part program and produce component in the Machine.

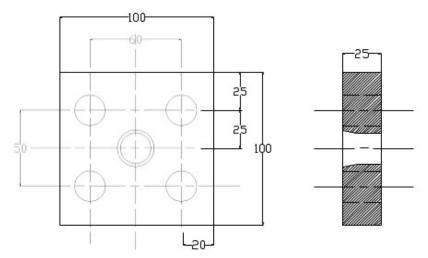


2. Using Stock removal cycle – Create a part program for multiple turning operations and produce component in the Machine.




3. Using canned cycle - Create a part program for thread cutting, grooving and produce component in the Machine.




**CNC Milling Machine** 

Material: M.S / Aluminum / acrylic fibre / plastic

4. Using Linear interpolation and Circular interpolation – Create a part program for grooving and produce component in the Machine.



5. Using canned cycle - Create a part program for drilling, tapping, counter sinking and produce component in the Machine.



6. Using subprogram - Create a part program and produce component in the Machine.



### **BOARD EXAMINATION**

Note:

- All the exercises in both sections should be completed. Two exercises will be given for examination by selecting one exercise from PART A and one exercise from PART B.
- All the exercises should be given in the question paper and students are allowed to select by a lot or question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

**Note:** Part A: The given component drawing should be created and solid modelling after assembly should be printed and submitted along with the answer paper for evaluation by the external examiner.

Part B: The program for the given component should be written in the answer paper. The program should be entered in the CNC machine and the component should be submitted for evaluation by the external examiner. The machined component should be kept under the custody of examiner.

### Allocation of marks for Board Examination

### PART A: Solid Modelling

Creation of sketch : 15
Modelling : 25
Accuracy : 5

### **PART B: CNC Programming**

Program writing : 15
Setting : 10
Editing and Machining : 20
Viva voce : 10
Total Marks : 100

### **LIST OF EQUIPMENTS (For 30 students)**

- 1. Personal computer 30 Nos.
- 2. 3D Solid Modelling and Simulation software Sufficient to the strength
- 3. CNC Lathe –2 Nos.
- 4. CNC Mill –2 Nos.
- 5. Consumables Sufficient quantity
- 6. Laser / Inkjet Printer 1 No.

### Blank Page

### STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

### **N-SCHEME**

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021652

Semester : VI

Subject Title : Heavy Vehicle Engineering Practical

### TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

| Subject                   | Instructions |          |                        | Examination           | 1     |          |
|---------------------------|--------------|----------|------------------------|-----------------------|-------|----------|
| 4021652                   | Hours /      | Hours /  |                        | Marks                 |       |          |
| Heavy Vehicle Engineering | Week         | Semester | Internal<br>Assessment | Board<br>Examinations | Total | Duration |
| Practical                 | 5            | 80       | 25                     | 100*                  | 100   | 3 Hrs.   |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

### **RATIONALE:**

For the decades a shortage of truck technicians existed throughout the world. The job opportunities and rates of pay in the trucking industry are increased. Good truck technicians are in high demand. The skill required of the truck technician is that of being a lifelong learner to keep abreast of the fast-changing technology of this industry. Considering the above factors this subject is introduced.

### **OBJECTIVES:**

Students are able to

- Explain the basic truck classifications.
- Describe the safety warnings in the work area.
- List some common tools used in heavy truck repair.
- Define the role of a battery in a vehicle electrical system.
- Identify and practice with the components of a charging system.
- Troubleshoot truck electrical circuit components to list the causes and failure.
- Understand the operation and maintenance of the clutch linkage system.

- Describe the automatic transmissions.
- Describe the components and operation of steering systems.
- Define the Brakes systems and list the symptoms, causes and remedies.
- Learn the usage of wheel aligner

### 4021652 HEAVY VEHICLE ENGINEERING PRACTICAL

### **Exercise:**

- 1. Check the charging system of a heavy vehicle. List the causes of charging system failure.
- 2. Check the starting system of a vehicle. Prepare the list of problem occurs and mention the possible causes, tests and remedies.
- 3. Check the head light of a vehicle for i) adjustment, ii) replacement and iii) bulb replacement.
- 4. Check the windshield wiper of a vehicle. List the symptoms, causes and remedy.
- 5. Inspect the clutch linkage system and clutch of a heavy vehicle. List the failure and possible causes and remedy/adjustment.
- 6. Inspect the standard transmission of a heavy vehicle. Carry out the preventive maintenance inspection on standard transmission.
- 7. Inspect the drive shaft of a heavy vehicle. List the failure and possible causes and remedy/adjustment.
- 8. Inspect the power steering system of a heavy vehicle. List the failure and possible causes and remedy/adjustment.
- 9. Check, measure and adjust the caster, chamfer, king pin inclination, toe-in and toeout using Wheel alignment.
- 10. Inspect the suspension system of a heavy vehicle. Carry out the preventive maintenance inspection.
- 11. Check the air disc brake system of a heavy vehicle. List the symptoms, causes and remedy.
- 12. Check the hydraulic brake system of a heavy vehicle. List the symptoms, causes and remedy.

### **BOARD EXAMINATION**

### Note:

- All the exercises should be completed before the Board Examinations. Any one exercise will be given for examination.
- All the exercises should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

### **DETAILLED ALLOCATION OF MARKS**

| SI. No. | Description                    | Max. Marks |
|---------|--------------------------------|------------|
| 1       | Procedure                      | 10         |
| 2       | Inspection / Diagnostic report | 30         |
| 3       | Symptoms and Causes report     | 25         |
| 4       | Remedies / Maintenance report  | 25         |
| 5       | Viva-voce                      | 10         |
|         | 100                            |            |

# LIST OF EQUIPMENT / TOOLS/MACHINERY'S REQUIRED (for a batch of 30 students)

| SI. No. | Machines / Tools / Equipments       | Quantity   |
|---------|-------------------------------------|------------|
| 1.      | Battery Charging and testing kit    | 1 No.      |
| 2.      | Heavy Vehicle                       | 1 No.      |
| 3.      | Transmission System Kit             | 1 No.      |
| 4.      | Power Steering System kit           | 1 No.      |
| 5.      | Wheel alignment kit                 | 1 No.      |
| 6.      | Air brake system kit                | 1 No.      |
| 7.      | Differential kit                    | 1 No.      |
| 8.      | Suspension system kit               | 1 No.      |
| 9.      | Hydraulic brake system Kit          | 1 No.      |
| 10.     | Special tools Sufficient quantity   | Sufficient |
|         | Special tools – Sufficient quantity | quantity   |
| 11.     | Consumables                         | Sufficient |
|         | Consumables                         | quantity   |

# STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021653

Semester : VI

Subject Title : Heating Ventilation and Air Conditioning Systems Practical

### **TEACHING AND SCHEME OF EXAMINATION**

No of weeks per semester: 16 weeks

| Subject                    | Instructions |          | Subject Instructions Examination |                       |       |          |  |
|----------------------------|--------------|----------|----------------------------------|-----------------------|-------|----------|--|
| 4021653                    | Hours /      | Hours /  | Marks                            |                       |       |          |  |
| Heating<br>Ventilation and | Week         | Semester | Internal<br>Assessment           | Board<br>Examinations | Total | Duration |  |
| Air Conditioning           |              |          | Assessment                       | Lxammations           |       |          |  |
| Systems<br>Practical       | 5            | 80       | 25                               | 100*                  | 100   | 3 Hrs.   |  |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

### Rationale

All the automobile are vehicles are equipped with Air Conditioning. Hence the fundamental knowledge of air Conditioning is most essential for an automobile. This course will help in understanding the principle of Refrigeration, Air-Conditioning and Psychrometry properties and also understanding the duct and ventilation design.

### **Objectives**

At the end of the course, the students will be able

- To understand the components of the automotive air-conditioning and their functions
- To understand the recent developments in this field
- To present a problem oriented in-depth knowledge of Automotive air conditioning
- To conduct various tests in Automotive air conditioning systems.
- To learn the layout of bus air-conditioning and its electric layout.
- To study about the refrigerant and practice leakage tests.
- To know the different sensors used in the HVAC system of automobile vehicles.

### 4021653 HEATING VENTILATION AND AIR CONDITIONING SYSTEMS PRACTICAL

### **Experiments:**

### **PART A**

- Determine the refrigerating effect, C.O.P and the compressor capacity of open type system with any one expansion device. (Thermostatic expansion valve / Capillary tube / Automatic Expansion Valve)
- 2. Determine the capacity of a window air conditioner.
- 3. To evaluate the condition of the car air conditioner by using electrical measurements with (a)Thermostatic expansion valve (b) Magnetic clutch (c) Heater
- 4. Conduct Leak tests in a vehicle air conditioning system, detect the failures and suggest the remedies. Conduct the Refrigerant Charge Test.
- 5. Conduct the car A/c performance check. Identify the causes and its remedies.
- 6. Conduct the flush test to remove the contaminants of refrigeration system.

### **PART B**

- 1. Draw the layout of a bus air conditioning system. Inspect, identify the maintenance requirements as per the service manual.
- 2. List the components of a car air-conditioning system. Identify the common issues, possible causes and suggest remedies.
- 3. Draw the circuit diagram to identify the sensors in the HVAC system of a vehicle. Write the diagnostic procedures for sensors.
- 4. Study the all-electric vehicle air conditioner. Study the refrigerant used in vehicle air conditioning.
- 5. Study the different types of evaporators. Serpentine evaporator, Plat & Fin Laminated Evaporator.
- 6. Study the A/c wiring circuit layout. Identify the protection devices to control.

### Reference

- 1. Automotive Air Conditioning Training Manual, Automotive & Industrial Refrigerant Service Equipment, Ariazone.
- 2. Automotive Heating & Air conditioning Techbook, Mike Stubblefied, John H Haynes, Haynes Publications Inc.
- 3. HVAC system (Auto A/c) diagnostics manuals.
- 4. Hand Book of Airconditioning and Refrigeration, Shan K Wang, McGraw-Hill

### **BOARD EXAMINATION**

### Note:

- All the exercises/experiments in both sections should be completed. Two
  exercises/experiments will be given for examination by selecting one from PART A
  and one from PART B.
- All the exercises/experiments should be given in the question paper and students
  are allowed to select by a lot or Question paper issued from the DOTE should be
  followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.

The external examiner should verify the working condition of machineries / equipment before commencement of the board practical examination.

### **DETAILLED ALLOCATION OF MARKS**

| SI. No. | Description                    | Max. Marks |  |  |  |
|---------|--------------------------------|------------|--|--|--|
|         | PART A                         |            |  |  |  |
| 1       | Procedure / Observation        | 10         |  |  |  |
| 2       | Calculation / Failures         | 30         |  |  |  |
| 3       | Result / Remedies              | 10         |  |  |  |
|         | PART B                         |            |  |  |  |
| 4       | Procedure / Explanation        | 10         |  |  |  |
| 5       | Inspection / Diagnostic report | 20         |  |  |  |
| 6       | Remedies / Maintenance report  | 10         |  |  |  |
| 7       | Viva-voce                      | 10         |  |  |  |
|         | Total                          |            |  |  |  |

# LIST OF EQUIPMENT / TOOLS / MACHINERY'S REQUIRED (For a batch of 30 students)

| SI. No. | Machines / Tools / Equipment                | Quantity               |
|---------|---------------------------------------------|------------------------|
| 1.      | Vapour Compression refrigeration test rig   | 1 No.                  |
| 2.      | Window air-conditioner test rig             | 1 No.                  |
| 3.      | Cooling tower arrangement                   | 1 No.                  |
| 4.      | Car Air conditioning system test rig        | 1 No.                  |
| 5.      | Bus air conditioning kit                    | 1 No.                  |
| 6.      | Sensors in the HVAC system of vehicle       | 1 No.                  |
| 7.      | Compressors used in Air conditioning system | 1 No.                  |
| 8.      | Evaporators used in Air conditioning system | 1 No.                  |
| 9.      | Vehicle A/c wiring circuit                  | 1 No.                  |
| 10.     | Refrigeration charging system kit           | 1 No.                  |
| 11.     | Tools and spanners                          | Sufficient<br>quantity |
| 12.     | Measuring and testing tools                 | Sufficient<br>quantity |
| 13.     | Special tools                               | Sufficient<br>quantity |
| 14.     | Consumables                                 | Sufficient<br>quantity |

### STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

### **N-SCHEME**

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021660

Semester : VI

Subject Title : Project Work and Internship

### TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

| Subject          | Instructions |          | Subject Instructions Examination |                       |       |          |  |
|------------------|--------------|----------|----------------------------------|-----------------------|-------|----------|--|
| 4020660          | Hours        | Hours /  |                                  | Marks                 |       |          |  |
| Project Work and | / Week       | Semester | Internal<br>Assessment           | Board<br>Examinations | Total | Duration |  |
| ппентыпр         | 6            | 96       | 25                               | 100*                  | 100   | 3 Hrs.   |  |

<sup>\*</sup> Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

### **RATIONALE:**

This subject 'Project Work and Internship" is the continuation of the previous semester subjects. The students are to implement the detailed project plan, which they have prepared. This project are generally an integration of the various types of skills acquired during their course of study. Hence it is essential that students are given opportunity to develop and integrate the highly essential industry oriented competencies and skills. This subject builds up greater confidence to face in the world of work.

### **OBJECTIVES:**

- Implement the theoretical and practical knowledge gained through the curriculum into an application suitable for a real practical working environment preferably in an industrial environment.
- Implement the planned activity as a team.
- Take appropriate decisions on collected information.
- Carryout cooperative learning through synchronous guided discussions within the class in key dates, asynchronous document sharing and discussions, as well as to prepare collaborative edition of the final project report.

### **Project Work and Internship:**

The students of all the Diploma Courses have to do a Project Work as part of the Curriculum and in partial fulfillment for the award of Diploma by the State Board of Technical Education and Training, Tamil Nadu. In order to encourage students to do worthwhile and innovative projects, every year prizes are awarded for the best three projects i.e. institution wise, region wise and state wise. The Project work must be reviewed twice in the same semester. The project work is approved during the V semester by the properly constituted committee with guidelines.

### a) Internal assessment mark for Project Work & Internship:

Project Review I ... 10 marks
Project Review II ... 10 marks

Attendance ... **05 marks** (Award of marks same as

theory subject pattern)

Total ... **25 marks** 

Proper record should be maintained for the two Project Reviews and preserved for one semester after the publication of Board Exams results. It should be produced to the flying squad and the inspection team at the time of inspection/verification.

### b) Allocation of Marks for Project Work & Internship in Board Examinations:

| Tatal                      | 400*     |
|----------------------------|----------|
| Internship Report          | 20 marks |
| Viva Voce                  | 30 marks |
| Report                     | 25 marks |
| Demonstration/Presentation | 25 marks |

Total 100\* marks

### c) Internship Report:

The internship training for a period of two weeks shall be undergone by every candidate at the end of IV / V semester during vacation. The certificate shall be produced along with the internship report for evaluation. The evaluation of internship training shall be done along with final year "Project Work & Internship" for 20 marks. The internship shall be undertaken in any industry / Government or Private certified agencies which are in social sector / Govt. Skill Centres / Institutions / Schemes.

A neatly prepared PROJECT REPORT as per the format has to be submitted by individual student during the Project Work & Internship Board examination.

<sup>\*</sup>Examination will be conducted for 100 marks and will be converted to 75 marks.